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Motivation

e Application of optimization cost and/or performance of future high energy colliders to
the case of FCC/SuperKEKB collider

eCorrection of linear and non-linear imperfections

eComplex simulations studies that aims to predict interplay of different physics effects

eStudy limitations from existing accelerators

> Exploit Al techniques to reduce computing resources and increase accuracy of measurements



FCC and SuperKEKB

FUTURE CIRCULAR COLLIDER (FCC) - 3D Schematic F U T U R E
Underground Infrastructure - Single Tunnel Design C | R C' ' L A R
John Ostorna - Charlie Cock - Joanna Stanyard - Angel Navascuis.

COLLIDER

International FCC project (CERN as host lab)

Continue to study experimental high energy particle
physics
Accelerator options: FCC-hh, FCC-ee, FCC-he

CDRspublié dans EuropeanPhysical Journal C (Vol 1)
and ST (Vol 2-4)

http://fcc-cdr.web.cern.ch/

ovenen SUPETKEKB
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Add / modify RF systems
for higher beam current
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Existing e+e- collider:
small size FCC-ee
proofs of principle of several design choices

https://doi.org/10.1093/ptep/pts083
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Isolation Forest + SVD denoising and anomaly
detection

— Original Data

— Denoised Data (Isolation Forest)
—— Denoised Data (IF + SVD)

Isolation Forest (IF): identify and remove outliers
SVD : retains dominant singular values Bl Improved
S/N in FFT of denoised data by IF+SVD s

3 features are extracted to identify anomaly with IF: : . — — -
The betatron tune (the main peak in the FFT spectrum), its amplitude mewm:oﬂ;:‘a’:“mnm .
and the signal to noise ratio — ongnaiona

—— Dengised Data

Table 1: Suspected Faulty or Faulty BPMs Detected

BPM Name | Classification | IF Anomaly Count _
MQD3E1LS suspected faulty 2 %
MQEAE23 | suspected faulty I :z‘ 107
MQEAE35 faulty 5
MQLA2RE | suspected faulty 2
MQLCTRE | suspected faulty 1 :

Fractional Tune



Denoising - SVD (on raw data)
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Singular values
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Denoising - IF

Anomaly iTree 1 iTree 2
Score
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Figure 6: How Isolated forest works



Denoising - IF + SVD (on raw data)
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Figure 2: A conceptual illustration of the IF algorithm.

Comparison of Singular Values Before and After Isolation Forest

—#— Before IF (S_original)
1 —a— After IF (5_if)
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A comparison of the singular values before and after applying the IF



Result :Denoising - IF + SVD (on raw data)

Amplitude [mm)

FFT Spectrum: Original vs Denoised Data
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{ —— oOnginal Data

— Denoised Data
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Position

Comparison of Original, IF Dencised, and IF + SVD Dencised BPM Data
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Wavelets and LSTM denoising

Data Normalization
Wavelet decomposition: Daubechies wavelet (db4)
Noise estimation (MAD)

Adaptive soft thresholding: A = @i/ 2 loen

Wavelet reconstruction: inverse wavelet transform
Post-processing with a LSTM Neural Network

ok wNE

_______

Moy Sagnal
=== enbned Signal

[J Denoised signal shows interesting peaks

FFT of Nolsy vs. Denoised Signal - HER_2024_06_24 /12 00_49_ ¥ MOCILE (Frequency Domain)

Maisy FIT
4 === Darsiued IFT




Denoising - Wavelet Transform
The Wavelet Transform

The Wavelet Transform results in analyzing a signal into different
frequencies at different resolutions, known as multiresolution analysis.

—_—

Good time resolution and
—  poor frequency resolution
at high frequencies.

Frequency

and poor time resolution

— } Good frequency resolution
at low frequencies.

Time



Denoising - Wavelet Transform
The Wavelet

The wavelet is a small wave such as these...

f‘ .

- -

The Wavelet is our new basis function, and acts as a window function.




Denoising - Wavelet Transform

We can change the width of the wavelet and its central frequency as
Obtained from the we move it across our signal by changing s. This is called scaling.

function y(t), known
as the wavelet.

\

F(us) = \/%L Fo () e

Scale Parameter (1/frequency)

db2 db3 db4 db5 db6

db7 db8 db9 db10

Wavelets on irregular point sets. Ingrid Daubechies, Igor Guskov, Peter Schrdder,
Wim Sweldens. Phil.Trans.Roy.Sec.A 357,2397-2413 (1999).

Expanded wavelet is better at
resolving low frequency
components of the signal
with bad time resolution.
(Large values of s)

Shrunken wavelet is better
at resolving high frequency
components of the signal
with good time resolution.
(Small values of s)



Denoising - Wavelet Transform + Al (on raw data)

LSTM Recurrent Unit
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Figure 7: LSTM Model
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Figure 8: Pipeline of our Model



Result - Wavelet Transform + Al

Denoised signal shows interesting peaks

Moty ve. Denoteed Signal - HER_2024 06 24 12 00 49 ¥ MOCZLE (Time Domain) FFT af Noisy vs. Denolsed Signal - HEH._MH_M_M/Z 2 00 49 ¥ MOCILE (Frequency Domain)
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Denoising - Wavelet Transform + Al : Model
Validation

F(t) --> F(t) + White_noise(t) noisy Signal

== Denoised Signal

Original vs. Noisy vs. Denoised Signal
SNR: 8.61 dB | PSNR: 16.89 dB

The SNR? compares the power of the signal to
the power of the noise. It is given by:

Amplitude

- ||'5"cl~'aiaur.t||2 i
SNR (dB) = 10 - log,,

||3clea11 - Sq:hanu::ris«eclH2

-2

Signal-to-Noise Ratio (SNR)

SNR =8.61 dB 0.0 0.2 0.4 - 0.6 0.8 10
Figure 9: Model Validation

2: Source : Sherman, C., & Butler, J. (2007). Transducers and Arrays for Underwater Sound. Springer New York. ISBN: 9780387331393. Retrieved from
https://books.google.fr/books?id=srREi-ScbFcC



https://books.google.fr/books?id=srREi-ScbFcC

Perspectives

e Further understanding and improvements of the algorithms:

* Optics function reconstruction of denoised data
« Comparison with OMC* FFT spectrum

* |nvestigate other Al techniques

* Understand the possible source (physics ?) of the two peaks in 0.2-0.3 frequency region

* Cern software using harpy library https://github.com/pylhc/omc3/tree/master/omc3



Thank you !



