

FAIR Universe HiggsML Uncertainty Challenge

Wahid Bhimji, Paolo Calafiura, <u>Ragansu Chakkappai</u>, Yuan-Tang Chou, Sascha Diefenbacher, Jordan Dudley, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham E Khoda, Benjamin Nachman, Peter Nugent, David Rousseau, Benjamin Sluijter, Benjamin Thorne, Ihsan Ullah, Po Wen, Yulei Zhang

UNIVERSITE PARIS-SACLAY

Introduction - Higgs Boson

- Discovery of Higgs boson completed the Standard model
- Higgs mechanism gives mass to particles
- Study of higgs boson could reveal us more interesting things of our universe

Introduction - H $\rightarrow \tau\tau$

- Higgs to tau tau interesting chanel to study
- Measures higgs coupling to leptons
- Tau lepton is unstable => decays to produce neutrinos

Introduction - ML in HEP

- Neutrinos can't be measured in ATLAS
- Classification of Signal and background is difficult
- Use of ML help us improve signal significance

HiggsML 2014

- Classification problem for Higgs decaying to Tau leptons based on final state 3-momenta and derived quantities
- Using ATLAS Open Data : 800K events, doi:10.7483/OPENDATA.ATLAS.ZBP2.M5T8

• Winning submission created XGBoost

Bias and uncertainty in ML in HEP

- ML methods in HEP are often trained based on simulation which has estimated systematic uncertainties ("Z")
- These are then applied in data with the different detector state Z=?

• Common baseline approach: Train classifier on nominal data (e.g. Z=1) and estimate uncertainties with alternate simulations. Shift Z and look at impact or perform full profile likelihood

Increasingly sophisticated approaches

- "pivot" Louppe, Kagan, Cranmer : <u>arXiv:1611.01046</u>
- "Uncertainty-aware" approach of Ghosh, Nachman, Whiteson <u>PhysRevD.104.056026</u>
 - Parameterize classifier using Z
 - Measured on "Toy" 2D Gaussian Dataset and dataset from <u>HiggsML Challenge</u> modified to include systematic on tau-energy scale
 - Performs as well as classifier trained on true Z
- Other novel approaches e.g. (not comprehensive)
 - Inferno: <u>arxiv:1806.04743</u>
 - Direct profile-likelihood: e.g. arxiv:2203.13079
 - (Neuro) Simulation Based Inference has to include Z: <u>arXiv:1911.01429</u>

Fair Universe: HiggsML Uncertainty Challenge

- Full HiggsML Uncertainty Challenge Running from September 12 to March 14th
- Accepted as <u>NeurIPS competition</u> 2024
- Dedicated workshop at NeurIPS 2024 at December 14th, Saturday morning

Background on Fair Universe Project

FAIR Universe

- 3 year US Dept. of Energy, AI for HEP project. Aims to:
 - Provide an open, large-compute-scale Al ecosystem for sharing datasets, training large models, fine-tuning those models, and hosting challenges and benchmarks.
 - **Organize a challenge series**, progressively rolling in tasks of increasing difficulty, based on novel datasets.
 - Tasks will focus on measuring and minimizing the effects of systematic uncertainties in HEP (particle physics and cosmology).
- This funding went to LBL, NERSC, U Washington, and Chalearn (Isabelle Guyon's Non-Profit US Organisation).

Fair Universe: HiggsML Uncertainty Challenge

- Extension of previous **HiggsML** challenge from 2014
- New Fair Universe dataset, with following improvements
 - Use (much) faster simulation
 - Numbers of events 800 K \Rightarrow ~280 M
 - Parameterized systematics
- Task : given a **pseudo-experiment** with given signal strength, provide a **Confidence Interval** on signal strength taking into account **statistics** and **systematics** uncertainties

Challenge Objective

- Train a AI model to improve cross section measurement significance
- The model will be tested with datasets with unknown systematics and signal strength μ . (μ =1 if Standard Model)
- For each pseudo-experiment participants must predict best mu estimate:
 - \circ μ_{hat} : best mu estimate
 - $[\mu_{16}, \mu_{84}]$: 68% Confidence Interval

Challenge Datasets

- Generated data with fast simulation of a detector based on simple parameterisation
- Using the updated Delphes ATLAS card
- Generated ~280 Million Events after initial cuts equivalent to 220 X 10fb-1
- Data generated using NERSC supercomputer.
- Data Organised into tabular form with **28** feature per event.

Process	Number Generated	LHC Events	10fb-1 Label
Higgs	52101127	1015	signal
Z Boson	221724480	1002395	background
Di-Boson	2105415	3783	background
$t \bar{t}$	12073068	44190	background

Challenge Datasets - Systematics

Apply parameterized systematics (Nuisance Parameters) :

- Feature distortions:
 - Tau Energy Scale (and correlated MET)
 - Jet Energy Scale (and correlated MET impact)
 - Additional randomised Soft MET

- Event category normalisation
 - Background overall normalisation
 - Di-boson background normalisation
 - ttbar background normalisation

Tau Energy Scale Systematics Applied

Histogram between nominal (TES = 1) and shifted (TES = 0.9)

TES = 0.9, is an exaggeration, in practice it is sampled with a gaussian of 1 + - 0.01

Fit on one pseudo experiment

Coverage Evaluation

• Form multiple pseudo-experiment test sets:

different signal strengths (μ) and systematics

- **10***µ* times **100** pseudo-experiments
- Task: predict uncertainty interval [$\mu_{16}^{},\mu_{84}^{}$]
 - \circ $\,$ E.g. 68% quantile of likelihood or assume 1σ

Uncertainty Quantification Metric

- Interval width (w) averaged over N test sets
- **Coverage (c)**: fraction of time μ is contained
- Combined using a **coverage function f(x)**:
- Penalizes undercoverage more
- Final score (s) designed to avoid large values or gaming

Scoring formula
$$s = -\ln\left((w + \epsilon)f(c)
ight)$$

Mean width Coverage penalty

$$w = rac{1}{N} \sum_{i=0}^{N} |\mu_{84,i} - \mu_{16,i}|$$
 .

$$c = rac{1}{N} \sum_{i=0}^{N} 1 ext{ if}(\mu_{true,i} \in [\mu_{84,i} - \mu_{16,i}])$$

Competition Flow

Leaderboard so far

Task:					Results Fact Sheet Answers			Higgs N	eurIPS Task 1
#	Participant	Entries	Date	ID	Method Name	Quantile Score	Interval	Coverage	RMSE
ō	ibrahime	9	2024- 11-15 17:34	158094	AdvnFMLE	0.59	0.55	0.66	0.23
0	ibrahime	9	2024- 11-15 14:26	157773	AdvnFBinned	0.51	0.6	0.71	0.27
3	hzume	6	2024- 11-15 09:54	157317	exp13-sub00	0.22	0.84	0.66	0.71
4	hzume	6	2024- 11-13 17:13	154835	exp10-sub04	-0.04	1.04	0.66	1.17

Ibrahim and Hzume invited for Neurips 2024 as speakers

Codabench Platform

Codabench

Codabench - open source platform for AI benchmarks and challenges

- Originally (CodaLab) Microsoft/Stanford now a Paris-Saclay/<u>LISN</u> led community
- > 600 challenges since 2013
- Completely open-ended competition design.
- Allows code submission as well as results e.g. for evaluation timing or reproducibility
- Also data-centric AI "inverted competitions"
- Queues for evaluation can run on diverse compute resources
- Platform itself can be deployed on different compute resources
- Ranked best challenge platform for ML by <u>ML contests</u>

Fair Universe Platform: Codabench-NERSC integration

System Specifications

Partition	# of nodes	CPU	GPU
GPU	1536	1x AMD EPYC 7763	4x <u>NVIDIA A100</u> (40GB)
	256	1x AMD EPYC 7763	4x <u>NVIDIA A100</u> (80GB)

Conclusion

- Al challenge which addresses Systematic Uncertainty in HEP problem.
- Large Data Set with ~280M Events (signal + background)
- New Scoring to take Coverage and Confidence interval into account.
- Custom ingestion algorithm to test multiple pseudo-experiments in parallel.
- Large Computing Infrastructure as back_end
- You can enter the **HiggsML Uncertainty Challenge** now!
 - <u>https://www.codabench.org/competitions/2977/</u>

Help and feedback: <u>#higgsml-uncertainty-challenge</u> channel on the <u>Fair Universe Slack</u>
Ongoing information Google Group: <u>Fair-Universe-Announcements</u>
Collaborations, questions, comments: <u>fair-universe@lbl.gov</u>
Ragansu Chakkappai and David Rousseau are here, talk to us!

Thank you for your attention!

Uncertainty Quantification Metric

1.

 \boldsymbol{c}

- Interval width (w) averaged over N test sets
- **Coverage (c)**: fraction of time μ is contained
- Combined using a **coverage function f(x)**:

$$egin{aligned} &x\geq 0.68-2\sigma_{68} ext{ and } x\leq 0.68+2\sigma_{68}:\ &x<0.68-2\sigma_{68}:\ 1+|rac{x-(0.68-2\sigma_{68})}{\sigma_{68}}|^4\ &x>0.68+2\sigma_{68}:\ 1+|rac{x-(0.68+2\sigma_{68})}{\sigma_{68}}|^3\ & ext{with } \sigma_{68}=rac{\sqrt{(1-0.68)0.68N)}}{N} \end{aligned}$$

N dependance for equivalent ideal coverage •

N

- Penalizes undercoverage more •
- Final score (s) designed to avoid large values or • gaming

$$egin{aligned} &w = rac{1}{N} \sum_{i=0}^N \left| \mu_{84,i} - \mu_{16,i}
ight| \ &= rac{1}{N} \sum_{i=0}^N 1 ext{ if}(\mu_{true,i} \in [\mu_{84,i} - \mu_{16,i}]) \end{aligned}$$

AT

$$s=-\ln\left((w+\epsilon)f(c)
ight)$$

Basic Algorithm

- 1. Divide data into *train_set* and *holdout_set*
- 2. Use *train_set* to Train the simple dense NN
- 3. Define S_i and B_i : predicted score bin content
- 4. Construct for S_i (α) and B_i(α) functions from *holdout_set*
- 5. Combine define Binned Negative Log Likelihood function as function of NPs and μ
- 6. For Each pseudo experiment
 - a. Predict score for pseudo experiment
 - b. Use Minuit to find value of mu, sigma_mu and NP
 - c. Returns
 - mu_hat
 - p16 = mu sigma_mu
 - p84 = mu + sigma_mu

NN with L2 regularization using PyTorch

- PyTorch NN Classifier is Trained to distinguish Signal (Higgs) from Background (Z)
- 32 features,
- Architecture
 - \circ 3 Hidden layers with 100 nodes
 - 1 Output node
 - ReLU Activation between layers
 - L2 Regularization during training
- Model return score between 0 (background) and 1(signal),

Parameterisation of $S(\alpha)$

With the help of the *holdout_set* for we get values of S and B for each NP in each bin. A polynomial function is used to fit them. This function is later used in the NLL formalism

Parameterisation of B(alpha)

Profile μ and α simultaneously

$$\begin{split} L(\mu, \vec{\alpha} | \mathcal{D}) &= \prod_{i=1}^{N_{\text{bins}}} \frac{(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))^{n_i} e^{-(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))}}{n_i!} \\ \Rightarrow t_{\mu, \vec{\alpha}} &= -2 \log \left(L(\mu, \vec{\alpha} \mid \mathcal{D}) \right) \\ &= -2 \sum_i^{N_{\text{bins}}} n_i \log(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha})) + (\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha})) \end{split}$$

L here is the likelihood estimator which depends on μ and α , where α is a vector of 5 NP thus the μ at which L is maximum or *t* is minimum is the predicted μ ,

NLL curve and contour

