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Introduction - Higgs Boson

e Discovery of Higgs boson completed the Standard model
e Higgs mechanism gives mass to particles

e Study of higgs boson could reveal us more interesting things of our universe

SM prediction
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Introduction - H — Tt

e Higgstotautau - interesting chanel to study
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Introduction - ML in HEP

Thod A e Neutrinos can't be measured in ATLAS
e Classification of Signal and background is difficult

e Use of ML help us improve signal significance

Sub-leading jet

Leading jet



HiggsML 2014

May to September 2014

. . . . \When High Energy Physics meets Machine Learning
e Classification problem for Higgs decaying to

Tau leptons based on final state 3-momenta /’ s \“

and derived quantities @‘,}

e Using ATLAS Open Data: 800K events, -\“ «~
doi:10.7483/OPENDATA.ATLAS.ZBP2.M5T8 '
60

e Winning submission created XGBoost



http://opendata.cern.ch/record/328

Measuring and minimizing
the effects of systematic
uncertainties in HEP
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Bias and uncertainty in ML in HEP

e ML methods in HEP are often trained based on simulation which has estimated systematic
uncertainties (“Z”)
e These are then applied in data with the different detector state Z=?

Simulation M Data
with Z = 1.0 Kdlels PRl with Z =7

e Common baseline approach: Train classifier on nominal data (e.g. Z=1) and estimate uncertainties
with alternate simulations. Shift Z and look at impact or perform full profile likelihood

Simulation /\ Simulation
withZ=1.0 with Z = 095

Simulation

Simplistic estimate of
uncertainty

with Z = 1. 05




Increasingly sophisticated approaches

“pivot” Louppe, Kagan, Cranmer : arXiv:1611.01046

»2)
“Uncertainty-aware” approach of Ghosh, Nachman, Whiteson
PhysRevD.104.056026
o Parameterize classifier using Z
o Measured on “Toy” 2D Gaussian Dataset and dataset from ~Trained ontrue Z  —Adversarial
HiggsML Challenge modified to include systematic on tau-energy Consine o Auamenttn
scale
o Performs as well as classifier trained on true Z 5% .
RED Narrower is
e Other novel approaches e.g. (hot comprehensive) £ 100 better
o Inferno: arxiv:1806.04743 =
o Direct profile-likelihood: e.g. arxiv:2203.13079
o (Neuro) Simulation Based Inference has to include Z: o125
arXiv:1911.01429 .
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https://arxiv.org/abs/1611.01046
https://link.aps.org/doi/10.1103/PhysRevD.104.056026
https://www.kaggle.com/c/higgs-boson
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.13079
https://arxiv.org/abs/1911.01429

Fair Universe: HiggsML Uncertainty Challenge

FAIR UNIVERSE - HIGGS

UNCERTAINTY CHALLENGE r—

ORGANIZED BY: FAIR Universe

CURRENT PHASE ENDS: March 14, 2025 At 1:00 AM GMT+1

CURRENT SERVER TIME October 22, 2024 At 11:02 AM GMT+2
e: docker.io/nersc/fa €:1298f0a8 (W

22222222222222222222222222222222222

e Full HiggsML Uncertainty Challenge Running from September 12 to March 14th
e Accepted as NeurlPS competition 2024
e Dedicated workshop at NeurlPS - 2024 at December 14th, Saturday morning



https://openreview.net/forum?id=aiYrZONlqy

Background on Fair Universe Project

e 3year US Dept. of Energy, Al for HEP project. Aims to:
o Provide an open, large-compute-scale Al ecosystem for
sharing datasets, training large models, fine-tuning those

models, and hosting challenges and benchmarks.

FAI R U N ive F'SC increasing difficulty, based on novel datasets.

o Tasks will focus on measuring and minimizing the effects of

o Organize a challenge series, progressively rolling in tasks of

systematic uncertainties in HEP (particle physics and

cosmology).
e Thisfunding went to LBL, NERSC, U Washington, and Chalearn
(Isabelle Guyon's Non-Profit US Organisation).
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Fair Universe: HiggsML Uncertainty Challenge

e Extension of previous HiggsML challenge from 2014

e New Fair Universe dataset, with following improvements
o Use (much) faster simulation
o Numbers of events 00 K= ~280 M
o Parameterized systematics

e Task:given a pseudo-experiment with given signal strength, provide
a Confidence Interval on signal strength taking into account
statistics and systematics uncertainties



Challenge Objective

Train a Al model to improve cross section measurement significance

The model will be tested with datasets with unknown systematics and
signal strength u. (u=1 if Standard Model)
For each pseudo-experiment participants must predict best mu estimate:
u,. : bestmuestimate
[u,ong,] : 68% Confidence Interval

(@)

©)

parameter

N E—D

latent

augmented data

Simulation

arg min L[g] —»
9

v

Machine Learning

7(x|0) —>
approximate
likelihood
ratio

Inference
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Challenge Datasets

e Generated data with fast simulation of a detector based on simple
parameterisation

e Usingthe updated Delphes ATLAS card

e Generated ~280 Million Events after initial cuts equivalent to 220
X 10fb-1

e Datagenerated using NERSC supercomputer.

e DataOrganised into tabular form with 28 feature per event.

Process Number Generated LHC Events@lofb_1 Label

Higgs 52101127 1015 signal
Z Boson 221724480 1002395 background D E l- PH E$
Di-Boson 2105415 3783 background fast simulation

tt 12073068 44190 background 13




Challenge Datasets - Systematics

Apply parameterized systematics (Nuisance Parameters) : Tood

e Featuredistortions:
o Tau Energy Scale (and correlated MET)
o Jet Energy Scale (and correlated MET impact)
o Additional randomised Soft MET

e Event category normalisation
o Background overall normalisation
o Di-boson background normalisation
o ttbar background normalisation

Leading jet

Sub-leading jet

14



Tau Energy Scale Systematics Applied

Histogram between
nominal (TES=1) and
shifted (TES = 0.9)

TES=0.9,isan
exaggeration, in practice it
is sampled with a gaussian

of 1+/-0.01
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Fit on one pseudo experiment

Stacked histogram of Score
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Coverage Evaluation

e Form multiple pseudo-experiment test sets:

different signal strengths (1) and systematics

100 —_— —— Coverage interval

—————— --- average u o  10u times 100 pseudo-experiments

T -=-= true u
R e e Task: predict uncertainty interval [u, , u,]

o E.g.68% quantile of likelihood or assume 10

60 1

—_——— e
40 - —
——
e — EE—
—— 100 pseudo experiments
<81 - - Each with different = -

—_— systematics

= E =
— = m
0.5 1.0 15 2.0 2.5
u
Y

coverage=65% "\

pseudo-experiments

10 sets each with different values of u




Uncertainty Quantification Metric

e Interval width (w) averaged over N test sets w = % Ei\io |84 — 16|

e Coverage (c): fraction of time u is contained c= Zfio 1 if(potruei € [psai — M16.])

e Combined using a coverage function f(x):

e Penalizes undercoverage more

e Final score (s) designed to avoid large values or gaming

101

f(x)

Scoringformula —— s = —In ((w + E)f(c))
0 o
Mean Wldth Coverage 05 06 07 08 09 1.0
penalty g

18



Competition Flow

N\

-

Get Public Data ) Train model
Compete with other
Mak t t@ ‘ best submissions
ake sure to no :
re-train in fit epare zip with model.py and wih ihe
function and pre-trained model competitio
S -
Submit el model t_° the Leaderboard is update Best submission is
competition website once a day - taken to Phase 2

Repeat till phase
ends



Leaderboard so far

Results
Task: Fact Sheet Answers Higgs NeurlPS Task 1!
# Participant Entries  Date ID Method Name Quantile Score  Interval Coverage @ RMSE
— 2024-
0 ibrahime 9 11-15 158094  AdvnFMLE 0.59 0.55 0.66 0.23
17:34
— 2024-
@ ibrahime 9 1115 157773 AdvnFBinned 0.51 0.6 0.71 0.27
14:26
2024-
i hzume 6 11-15 157317  exp13-sub00 0.22 0.84 0.66 0.71
09:54
—_ 2024-
a hzume 6 11-13 154835 exp10-sub04 -0.04 1.04 0.66 1:17
17113

Ibrahim and Hzume invited for Neurips 2024 as speakers

20



Large-compute-scale
Al ecosystem ... hosting
challenges and
benchmarks.

N\
\
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Codabench Platform

Benchmark
Participants

Su

bmit {}

Code

(3) Reproducible

a

Platform Benchmark
Developers Organizers
Develop {} Prepare {}
Codabench | (1) Flexible Benchmark
(2) Easy (Bundle)
< = Task A
TN AR atb i, Task B
(1) Ingestion
A Meta- Scoring
Benchmark | (2) Creation/API
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(3) Docker

N
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Code

{4— Requirement

m— |mplementation w

Codabench

Codabench - open source platform for Al benchmarks and

challenges

e Originally (CodalLab) Microsoft/Stanford now a
Paris-Saclay/LISN led community

e > 600 challengessince 2013

e Completely open-ended competition design.

e Allows code submission as well as results e.g. for
evaluation timing or reproducibility

e Alsodata-centric Al “inverted competitions”

e Queues for evaluation can run on diverse compute

resources

e Platformitself can be deployed on different compute

resources

e Ranked best challenge platform for ML by ML contests

22


https://www.lisn.upsaclay.fr/?lang=en
https://mlcontests.com/state-of-competitive-machine-learning-2023/

Fair Universe Platform:
Codabench-NERSC integration

( FAIR Universe m ( Microservice(']

Benchmark Jobs Joki
& podman:hpe submitted
using the
28 Imiekter SEAPI ; 2
Ly Peaithi. System Specifications
Benchmark submission payload NQBSC Partition # of nodes CPU GPU
GPU 1536 1x AMD EPYC 7763 4x NVIDIA A100 (40GB)

Monitoring for
- submissions from 5 1x AMD EPYC 77
Benchmark [ FAIR Universe } 256 X 63 4x NVIDIA A100 (80GB)

Specific users
results Challenge P

Ceodabench

codabench.org

o S

23



Conclusion

e Al challenge which addresses Systematic Uncertainty in HEP problem.

e Large Data Set with ~280M Events (signal + background)

e New Scoring to take Coverage and Confidence interval into account.

e Custom ingestion algorithm to test multiple pseudo-experiments in parallel.
e Large Computing Infrastructure as back_end

e You can enter the HiggsML Uncertainty Challenge now!

e https://www.codabench.org/competitions/2977/

Help and feedback: #higgsml-uncertainty-challenge channel on the Fair Universe Slack
Ongoing information Google Group: Fair-Universe-Announcements

Collaborations, questions, comments: fair-universe@Ibl.gov

Ragansu Chakkappai and David Rousseau are here, talk to us!

24


https://www.codabench.org/competitions/2977/
https://fairuniverse.slack.com/archives/C07LJ4J9X8Q
https://join.slack.com/t/fairuniverse/shared_invite/zt-2dt9ovrp1-jvi0DnCK9jzL3VGrdwYNMA
https://groups.google.com/u/0/a/lbl.gov/g/Fair-Universe-Announcements/
mailto:fair-universe@lbl.gov

N\

Thank you for
your attention!
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Uncertainty Quantification Metric

1 N
w= 5§D i o |meai — el
Interval width (w) averaged over N test sets

Coverage (c): fraction of time u is contained
Combined using a coverage function f(x):

c= % Zij\io 1 if(petrue, € (184, — M16,i])

x > 0.68 — 2043 and x < 0.68 + 2045 : 1.

z<0.68 — 2063 : 1+‘M|4

f(x)

z>0.68 + 2065 : 1+ |2 (00wl 3

= — f0Nese = 100
with 068 — u 0.]6\?)0'681\/‘) 1% —— f(X)Niest = 1000

015 0:6 0t7 018 019 1.0

N dependance for equivalent ideal coverage
Penalizes undercoverage more
Final score (s) designed to avoid large values or s=—1In ((w e E)f(c))
gaming
See also Sascha Diefenbacher’s AISSAI Workshop presentation

27


https://indico.in2p3.fr/event/30589/contributions/130542/attachments/81509/120098/Diefenbacher_Uncertainty_Metrics.pdf

Basic Algorithm

1. Dividedatainto train setand holdout set

2. Use train_setto Train the simple dense NN 168

3. DefineS_iandB_i: predicted score bin content = :::Z:i:?f,
4. Construct for S.i (a) and B_i(a) functions from i

4 pseudo-data

holdout_set 10° 4
5. Combine define Binned Negative Log Likelihood function
as function of NPs and u
6. For Each pseudo experiment 10° 1

Events

a. Predict score for pseudo experiment
b. Use Minuit to find value of mu, sigma_mu and NP 10°
0.0 0.2 0.4 0.6 0.8 1.0
C. Retu rns Model Output
m mu_ hat

m plé = mu - sigma mu
m p84 = mu + sigma mu



NN with L2 regularization using PyTorch

PyTorch NN Classifier is Trained to distinguish Signal
(Higgs) from Background (Z)
32 features,
Architecture
o 3 Hidden layers with 100 nodes
1 Output node
ReLU Activation between layers
L2 Regularization during training
Model return score between O (background) and
1(signal),

o O O

29



Parameterisation of S(«)

With the help of the holdout set for we get values of S and B for each NP in each bin.
A polynomial function is used to fit them. This function is later used in the NLL formalism

Bin 21 Bin 22 Bin 24
s % - * 8 us{ * °
< . A o n o
- fits : o \ 5 164 fits . - fits
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14 o 140 1
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) 2
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2 2 135
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Parameterisation of B(alpha)

Events
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Profile y and a simultaneously

Nbins Wi A\ o —(1S; (&) +Bi(&))
(1Si(&) + B;(@))™e~wSi(@+B:
L(p,@|D) = H i
=1 -
= t,q = — 2log (L(u,a | D))

Nbins
—. 9 Z n; log(pS; (@) + B;(d)) + (uS;(&) + B;(d))

L here is the likelihood estimator which depends on y and «, where «ais a
vector of 5 NP thus the y at which L is maximum or t is minimum is the
predicted p,
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NLL curve and contour

We use the "iminuit’ package to find the minimum of

i /
([
34 t* with high accuracy.
e The 1-sigma width is the width between points on the
21 parabola for 't =1".
1
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