
Modelling dynamical systems: Learning ODEs with no

internal ODE resolution

Bowen Zhu1 Fotis Kapotos1 Sida-Bastien Li1

E. Goutierre2,3 Johanne Cohen2 Hayg Guler3 Michèle Sebag2

Thursday 21st November 2024

1Centrale Supélec, Université Paris-Saclay, France

2LISN, Université Paris-Saclay, France,

3IJCLab, Université Paris-Saclay, France.

Dynamic system modeling

1/23

Surrogates models for beam dynamics studies

• Learn beam properties as a function of control parameters

• Learn beam projection (transverse, longitudinal)

• Learn 6D beam distribution

• Learn and Model beam trajectory using an ODE framework

2/23

Surrogates models for beam dynamics studies

6D beam distribution:
Adapt Pointnet architecture to 6D beam distribution

• Build a causal network

• Slice full accelerator

• Learn full 6D in each

segment

• Multi-task learing

methods

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

CBPM1 CICT1 Cscreen1 CICT2 CBPM2 Cscreen2

CLBPM1
CLICT1

CLscreen1
CLICT2

CLBPM2
CLscreen2

Physics-aware modelling of an accelerated particle cloud.

NeurIPS/ML4PS 2023

3/23

Surrogates models for beam dynamics studies

6D beam distribution:
Adapt Pointnet architecture to 6D beam distribution

• Build a causal network

• Slice full accelerator

• Learn full 6D in each

segment

• Multi-task learing

methods

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

CBPM1 CICT1 Cscreen1 CICT2 CBPM2 Cscreen2

CLBPM1
CLICT1

CLscreen1
CLICT2

CLBPM2
CLscreen2

4/23

Surrogates models for beam dynamics studies

6D beam distribution:
Adapt Pointnet architecture to 6D beam distribution

• Build a causal network

• Slice full accelerator

• Learn full 6D in each

segment

• Multi-task learing

methods

a1 . . . a3 b1 . . . b3 MLP (64, 64)] . . . concatenate shared (128, 1)

...

shared (16, 32, 64) . . . concatenate shared (128, 128) . . . shared (128, 64, 6)

shared (16, 32, 64) . . . concatenate shared (128, 128) . . . shared (128, 64, 6)

shared (16, 32, 64) . . . concatenate shared (128, 128) . . . shared (128, 64, 6)

...
...

...
...

...
...

shared (16, 32, 64) ...
...

.
...

... concatenate ...
...

.
...

...
...

...
.

...
...

...
...

.
...

...
shared (128, 128) ...

...
.

...
...

shared (128, 64, 6) ...
...

...
...

...
...

shared (16, 32, 64) . . . concatenate shared (128, 128) . . . shared (128, 64, 6)

shared (128, 256)

. . .

. . .

. . . MaxPool . . . concatenate

...
...

.
...

...

. . .

5/23

Surrogates models for beam dynamics studies

6D beam distribution:
Adapt Pointnet architecture to 6D beam distribution

• Build a causal network

• Slice full accelerator

• Learn full 6D in each

segment

• Multi-task learing

methods

Parameters 1
Paymeters

2 Parameters N

Module Module Module

1 2 N

I
Diagnostics 1 Diagnostics 2 Diagnostics n

6/23

Surrogates models for beam dynamics studies

6D beam distribution:
Adapt Pointnet architecture to 6D beam distribution

• Build a causal network

• Slice full accelerator

• Learn full 6D in each

segment

• Multi-task learing

methods

Physics-aware modelling of an accelerated particle cloud.

NeurIPS/ML4PS 2023

7/23

Motivation

Goal:
Create a surrogate model for particle accelerators

• Predict beam trajectory from initial state and accelerator settings

• Accelerator trajectories could be anything from beam position, size,

emittance along the beamline

• trajectory could be also seen as any times series data

• Model beam trajectory using an ODE framework

8/23

Problem Description: Supervised Learning for ODE Approximation

Objective: Learn an approximate trajectory of the particle beam based on time

measurements and control parameters.

Key Components:

• Time Measurements:

(Ti)
N
i=1 with Ti ∈ [t0,T]

These are the discrete time points where the trajectory is observed.

• Trajectory Function:

u : [t0,T]× Rp → Rn

The trajectory u(t, c) maps time t and the initial state/control parameters

c to a position in the n-dimensional space.

• Control Parameters:

c ∈ Rm

Control parameters c influence the trajectory of the beam. These could

represent accelerator settings or other system controls.

• Goal: Approximate the trajectory u(t, c) by learning from the initial

conditions and control parameters.

Context: Understanding and predicting particle beam trajectories is crucial for

optimizing the performance of particle accelerators. By approximating this

behavior through supervised learning, we aim to improve the control and

efficiency of accelerator operations.

9/23

Table of Contents

Background

Neural Integral Ordinary Differential Equations (NIODE)

Preliminary Experiment Results

10/23

Background

Node approach

11/23

Background in our context

• Recurrent Neural Networks (RNNs):

u(ti+1, c) = u(ti , c) + fθ(u(ti , c))

• fθ is a neural network that captures the system’s dynamics.

• θ refers to the learned weights of the neural network.

• Neural ODEs (NODEs) Chen-2018:

• Unlike RNNs, NODEs model the system’s behavior in continuous time:

du(t, c)

dt
= f (u(t, c), t, c)

• Here, fθ is a neural network that approximates the unknown dynamics f .

• The trajectory û(t, c) is computed by solving the ODE:

d û(t, c)

dt
= fθ(û(t, c), t, c)

• This approach allows for a more flexible representation of time-evolving

processes.

12/23

Neural Ordinary Differential Equations (NODE)

NODE integrates neural networks into the ODE framework by parameterizing

the derivative of the state with respect to time using a neural network:

du

dt
(t, c) = f (u (t, c) , t, c) → dû

dt
(t, c) = fθ (û (t, c) , t, c)

NODE Algorithm:

1. Initialize the neural network fθ with random weights.

2. For a control parameter c and trajectory u (t, c):

2.1 Solve the ODE to get û (t, c).

2.2 Compute the loss: L(û (T , c)) = ||û (T , c)− u (T , c) ||2.
2.3 Calculate the gradient of the loss using the adjoint method.

2.4 Update the network weights based on the gradient.

Resolution: The state estimate û (t, c) at any time t is obtained by

numerically solving the ODE.

û (t, c) = ODESolve
(
f̂θ (·, c) , û (t0, c) , t0, t, c

)
13/23

Limitations of NODE

1. Computational Time: NODE relies on numerical ODE solvers to integrate

the system’s dynamics. This can become computationally intensive, especially

for complex models and long-time series.

2. Modeling Discontinuities:

• NODE inherently assumes smooth dynamics governed by the ODEs (du
dt

should be well defined everywhere).

• The smooth dynamics assumption makes it challenging to model time

series with abrupt changes or discontinuities.

u (t, c) = H (t)
du

dt
(t, c) = δ (t)

14/23

Neural Integral Ordinary Differential

Equations (NIODE)

INode Framework: Driving and extra functions

Objective: Learn the trajectories u using a model inspired by NODEs.

Additional Information: Incorporate an extra function v = F(u) that

satisfies:
dv

dt
(t, c) = g(u(t, c), v(t, c), t)

where g is called a driving function and must satisfy :

1. Lipschitz Continuity in State Space:

∥g(u2, xv, t)− g(u1, xv, t)∥ ≤ ku∥u2 − u1∥

2. Lipschitz Continuity in Integral State Space:

∥g(u, xv2, t)− g(u, xv1, t)∥ ≤ kv∥xv2 − xv1∥

3. Continuity Over Time: g is continuous with respect to time.

15/23

Choice of extra function

Different Choices for v and Their Impact on g

1. Case 1: If v(t, c) is the integral of u(t, c):

v(t, c) =

∫ t

t0

u(s, c) ds

Then, g = u (identity with respect to u).

2. Case 2: If v(t, c) is the exponentially smoothed version of u(t, c):

v(t, c) = u(t0, c)e
−λ(t−t0) + λ

∫ t

t0

e−λ(t−s)u(s, c) ds

Then, g = λ(u − v).

16/23

Choice of extra function

Different Choices for v and Their Impact on g

1. Case 1: If v(t, c) is the integral of u(t, c):

v(t, c) =

∫ t

t0

u(s, c) ds

Then, g = u (identity with respect to u).

2. Case 2: If v(t, c) is the exponentially smoothed version of u(t, c):

v(t, c) = u(t0, c)e
−λ(t−t0) + λ

∫ t

t0

e−λ(t−s)u(s, c) ds

Then, g = λ(u − v).

16/23

INode Framework: Training

Framework:

We consider an extra function v(t, c) that evolves according to the differential

equation, where the driving function g verifies certain properties :

dv(t, c)

dt
= g(u(t, c), v(t, c), t) (1)

Training Framework:

• Compute v(t, c) from all observable trajectories u(t, c).

• Train a neural network fθ to learn u(t, c) from v(t, c):

u(t, c) = fθ(v(t, c), t, c)

• This defines a new ODE:

dv(t, c)

dt
= g(fθ(v(t, c), t, c), v(t, c), t) = gθ(v(t, c), t, c)

17/23

INode Framework: Training

Framework:

We consider an extra function v(t, c) that evolves according to the differential

equation, where the driving function g verifies certain properties :

dv(t, c)

dt
= g(u(t, c), v(t, c), t) (1)

Training Framework:

• Compute v(t, c) from all observable trajectories u(t, c).

• Train a neural network fθ to learn u(t, c) from v(t, c):

u(t, c) = fθ(v(t, c), t, c)

• This defines a new ODE:

dv(t, c)

dt
= g(fθ(v(t, c), t, c), v(t, c), t) = gθ(v(t, c), t, c)

17/23

INode Framework: Training

Framework:

We consider an extra function v(t, c) that evolves according to the differential

equation, where the driving function g verifies certain properties :

dv(t, c)

dt
= g(u(t, c), v(t, c), t) (1)

Training Framework:

• Compute v(t, c) from all observable trajectories u(t, c).

• Train a neural network fθ to learn u(t, c) from v(t, c):

u(t, c) = fθ(v(t, c), t, c)

• This defines a new ODE:

dv(t, c)

dt
= g(fθ(v(t, c), t, c), v(t, c), t) = gθ(v(t, c), t, c)

17/23

INode Framework: Training

Framework:

We consider an extra function v(t, c) that evolves according to the differential

equation, where the driving function g verifies certain properties :

dv(t, c)

dt
= g(u(t, c), v(t, c), t) (1)

Training Framework:

• Compute v(t, c) from all observable trajectories u(t, c).

• Train a neural network fθ to learn u(t, c) from v(t, c):

u(t, c) = fθ(v(t, c), t, c)

• This defines a new ODE:

dv(t, c)

dt
= g(fθ(v(t, c), t, c), v(t, c), t) = gθ(v(t, c), t, c)

17/23

INode Framework: Algorithm

Step 1: Operator preprocessing:

• Compute v = F(u) from training data.

Step 2: Learning the ODE:

• Train neural network fθ to minimize the discrepancy between observed

trajectories u(t, c) and predicted trajectories fθ(v(t, c)):

min
fθ

∥u(t, c)− fθ(v(t, c))∥

This is a classic regression problem

Step 3: Evaluation:

• Solve the ODE defined by gθ to compute the predicted auxiliary function

v̂(t, c).

• Estimate the trajectory û(t, c) as û(t, c) = fθ(v̂(t, c)).

18/23

Preliminary Experiment Results

Particle Accelerator Simulations

• u (z , c) is the evolution of a beam in a linear particle accelerator

• z is the longitudinal position of the beam (equivalent oft in the equations

above)

• c ∈ R108 is a control parameter of the simulation

Goal:

• Learn c → u (·, c)

Method:

• Learn f̂ s.t. u (z , c) = f̂

(
z∫

s=0

u (s, c) ds, z , c, θ

)

19/23

Dataset and Experiment Set-up

Dataset

• Linac dataset ThomX-2024 contains 4000 simulations generated by Astra.

• Control settings dimension (c) is 36 Purwar-2023.

• Each trajectory consists of 4000 points: (tj , u (tj , cj)), tj ∈ [0, 9.393].

Experiment Set-up

• Compare three variants against baselines (LSTM, NODE).

Performance Measurement

• Use the coefficient of determination R2 to evaluate model performance:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

20/23

Preliminary Results

LSTM

NODE

INODE

Emittance over time XX ′
avr over time X ′

ms over time

(The orange curve represents the ground truth trajectory)

21/23

Conclusion

INode Framework:

• Extends Neural ODEs to handle systems with discontinuous behavior.

• Efficient for data-driven ODEs, avoiding the need to directly solve complex

ODEs during training.

• Uses integral operators to process input data, addressing challenges of

discontinuities. Other families of operators could be explored !

Key Results:

• Theoretical guarantees

• Improved computational efficiency

• Provides a foundational approach that can be extended for future work

22/23

Questions ?

Thanks you for your attention

23/23

Bibliography

23/23

	Background
	Neural Integral Ordinary Differential Equations (NIODE)
	Preliminary Experiment Results

