Modelling dynamical systems: Learning ODEs with no internal ODE resolution

Bowen Zhu¹ Fotis Kapotos¹ Sida-Bastien Li¹ E. Goutierre^{2,3} Johanne Cohen² Hayg Guler³ Michèle Sebag²

Thursday 21st November 2024

¹Centrale Supélec, Université Paris-Saclay, France

²LISN, Université Paris-Saclay, France,

³IJCLab, Université Paris-Saclay, France.

Dynamic system modeling

Surrogates models for beam dynamics studies

- Learn beam properties as a function of control parameters
- Learn beam projection (transverse, longitudinal)
- Learn 6D beam distribution
- Learn and Model beam trajectory using an ODE framework

Adapt Pointnet architecture to 6D beam distribution

- Build a causal network
- Slice full accelerator
- Learn full 6D in each segment
- Multi-task learing methods

Physics-aware modelling of an accelerated particle cloud. NeurIPS/ML4PS 2023

Adapt Pointnet architecture to 6D beam distribution

- Build a causal network
- Slice full accelerator
- Learn full 6D in each segment
- Multi-task learing methods

Adapt Pointnet architecture to 6D beam distribution

- Build a causal network
- Slice full accelerator
- Learn full 6D in each segment
- Multi-task learing methods

Adapt Pointnet architecture to 6D beam distribution

- Build a causal network
- Slice full accelerator
- Learn full 6D in each segment
- Multi-task learing methods

Surrogates models for beam dynamics studies

6D beam distribution:

Adapt Pointnet architecture to 6D beam distribution

- Build a causal network
- Slice full accelerator
- Learn full 6D in each segment
- Multi-task learing methods

Physics-aware modelling of an accelerated particle cloud. NeurIPS/ML4PS 2023

Goal:

Create a surrogate model for particle accelerators

- Predict beam trajectory from initial state and accelerator settings
- Accelerator trajectories could be anything from beam position, size, emittance along the beamline
- trajectory could be also seen as any times series data
- Model beam trajectory using an **ODE framework**

Objective: Learn an approximate trajectory of the particle beam based on time measurements and control parameters.

Key Components:

• Time Measurements:

 $(T_i)_{i=1}^N$ with $T_i \in [t_0, T]$

These are the discrete time points where the trajectory is observed.

• Trajectory Function:

$$u: [t_0, T] \times \mathbb{R}^p \to \mathbb{R}^n$$

The trajectory u(t, c) maps time t and the initial state/control parameters c to a position in the *n*-dimensional space.

• Control Parameters:

$$\mathbf{c} \in \mathbb{R}^m$$

Control parameters \mathbf{c} influence the trajectory of the beam. These could represent accelerator settings or other system controls.

• Goal: Approximate the trajectory u(t, c) by learning from the initial

Background

Neural Integral Ordinary Differential Equations (NIODE)

Preliminary Experiment Results

Background

Node approach

• Recurrent Neural Networks (RNNs):

$$u(t_{i+1}, \mathbf{c}) = u(t_i, \mathbf{c}) + f_{\theta}(u(t_i, \mathbf{c}))$$

- f_{θ} is a neural network that captures the system's dynamics.
- θ refers to the learned weights of the neural network.

• Neural ODEs (NODEs) Chen-2018:

• Unlike RNNs, NODEs model the system's behavior in continuous time:

$$\frac{d\mathsf{u}(t,\mathbf{c})}{dt} = f(\mathsf{u}(t,\mathbf{c}),t,\mathbf{c})$$

- Here, f_{θ} is a neural network that approximates the unknown dynamics f.
- The trajectory $\hat{u}(t, \mathbf{c})$ is computed by solving the ODE:

$$\frac{d\hat{\mathbf{u}}(t,\mathbf{c})}{dt} = f_{\theta}(\hat{\mathbf{u}}(t,\mathbf{c}),t,\mathbf{c})$$

This approach allows for a more flexible representation of time-evolving processes.

NODE integrates neural networks into the ODE framework by parameterizing the derivative of the state with respect to time using a neural network:

$$rac{\mathrm{d} \mathbf{u}}{\mathrm{d} t}\left(t,\mathbf{c}
ight)=f\left(\mathrm{u}\left(t,\mathbf{c}
ight),t,\mathbf{c}
ight) \quad
ightarrow \quad rac{\mathrm{d} \widehat{\mathbf{u}}}{\mathrm{d} t}\left(t,\mathbf{c}
ight)=f_{ heta}\left(\widehat{\mathrm{u}}\left(t,\mathbf{c}
ight),t,\mathbf{c}
ight)$$

NODE Algorithm:

- 1. Initialize the neural network f_{θ} with random weights.
- 2. For a control parameter **c** and trajectory u(t, c):
 - 2.1 Solve the ODE to get $\hat{u}(t, \mathbf{c})$.
 - 2.2 Compute the loss: $L(\widehat{u}(T, \mathbf{c})) = ||\widehat{u}(T, \mathbf{c}) u(T, \mathbf{c})||^2$.
 - 2.3 Calculate the gradient of the loss using the adjoint method.
 - 2.4 Update the network weights based on the gradient.

Resolution: The state estimate $\hat{u}(t, \mathbf{c})$ at any time t is obtained by numerically solving the ODE.

$$\widehat{u}\left(t,\mathbf{c}
ight)=\mathrm{ODESolve}\left(\widehat{f}_{ heta}\left(\cdot,\mathbf{c}
ight),\widehat{u}\left(t_{0},\mathbf{c}
ight),t_{0},t,\mathbf{c}
ight)$$

1. Computational Time: NODE relies on numerical ODE solvers to integrate the system's dynamics. This can become computationally intensive, especially for complex models and long-time series.

2. Modeling Discontinuities:

- NODE inherently assumes smooth dynamics governed by the ODEs (^{du}/_{dt} should be well defined everywhere).
- The smooth dynamics assumption makes it challenging to model time series with abrupt changes or discontinuities.

Neural Integral Ordinary Differential Equations (NIODE)

Objective: Learn the trajectories u using a model inspired by NODEs.

Additional Information: Incorporate an extra function $v = \mathcal{F}(u)$ that satisfies:

$$\frac{d\mathsf{v}}{dt}(t,\mathbf{c}) = g(\mathsf{u}(t,\mathbf{c}),\mathsf{v}(t,\mathbf{c}),t)$$

where g is called a driving function and must satisfy :

1. Lipschitz Continuity in State Space:

$$\|g(\mathsf{u}_2,\mathsf{x}_{\mathsf{v}},t)-g(\mathsf{u}_1,\mathsf{x}_{\mathsf{v}},t)\|\leq k_{\mathsf{u}}\|\mathsf{u}_2-\mathsf{u}_1\|$$

2. Lipschitz Continuity in Integral State Space:

$$\|g(\mathsf{u},\mathsf{x}_{\mathsf{v}2},t) - g(\mathsf{u},\mathsf{x}_{\mathsf{v}1},t)\| \le k_{\mathsf{v}}\|\mathsf{x}_{\mathsf{v}2} - \mathsf{x}_{\mathsf{v}1}\|$$

3. Continuity Over Time: g is continuous with respect to time.

Different Choices for v and Their Impact on g

1. **Case 1:** If v(t, c) is the integral of u(t, c):

$$\mathsf{v}(t,\mathbf{c}) = \int_{t_0}^t u(s,\mathbf{c}) \, ds$$

Then, g = u (identity with respect to u).

Different Choices for v and Their Impact on g

1. **Case 1:** If v(t, c) is the integral of u(t, c):

$$\mathsf{v}(t,\mathbf{c}) = \int_{t_0}^t u(s,\mathbf{c}) \, ds$$

Then, g = u (identity with respect to u).

2. Case 2: If v(t, c) is the exponentially smoothed version of u(t, c):

$$\mathsf{v}(t,\mathbf{c}) = u(t_0,\mathbf{c})e^{-\lambda(t-t_0)} + \lambda \int_{t_0}^t e^{-\lambda(t-s)}u(s,\mathbf{c})\,ds$$

Then, $g = \lambda(u - v)$.

We consider an **extra function** v(t, c) that evolves according to the differential equation, where the **driving function** g verifies certain properties :

$$\frac{\mathrm{d}\mathbf{v}(t,\mathbf{c})}{\mathrm{d}t} = g(\mathbf{u}(t,\mathbf{c}),\mathbf{v}(t,\mathbf{c}),t) \tag{1}$$

We consider an **extra function** v(t, c) that evolves according to the differential equation, where the **driving function** g verifies certain properties :

$$\frac{\mathrm{d}\mathbf{v}(t,\mathbf{c})}{\mathrm{d}t} = g(\mathbf{u}(t,\mathbf{c}),\mathbf{v}(t,\mathbf{c}),t) \tag{1}$$

Training Framework:

• Compute v(t, c) from all observable trajectories u(t, c).

We consider an **extra function** v(t, c) that evolves according to the differential equation, where the **driving function** g verifies certain properties :

$$\frac{\mathrm{d}\mathbf{v}(t,\mathbf{c})}{\mathrm{d}t} = g(\mathbf{u}(t,\mathbf{c}),\mathbf{v}(t,\mathbf{c}),t) \tag{1}$$

Training Framework:

- Compute v(t, c) from all observable trajectories u(t, c).
- Train a neural network f_{θ} to learn u(t, c) from v(t, c):

 $\mathsf{u}(t,\mathbf{c}) = f_{\theta}(\mathsf{v}(t,\mathbf{c}),t,\mathbf{c})$

We consider an **extra function** v(t, c) that evolves according to the differential equation, where the **driving function** g verifies certain properties :

$$\frac{\mathrm{d}\mathbf{v}(t,\mathbf{c})}{\mathrm{d}t} = g(\mathbf{u}(t,\mathbf{c}),\mathbf{v}(t,\mathbf{c}),t) \tag{1}$$

Training Framework:

- Compute v(t, c) from all observable trajectories u(t, c).
- Train a neural network f_{θ} to learn u(t, c) from v(t, c):

$$\mathsf{u}(t,\mathbf{c}) = f_{\theta}(\mathsf{v}(t,\mathbf{c}),t,\mathbf{c})$$

• This defines a new ODE:

$$\frac{\mathrm{d}\mathsf{v}(t,\mathbf{c})}{\mathrm{d}t} = g(f_{\theta}(\mathsf{v}(t,\mathbf{c}),t,\mathbf{c}),\mathsf{v}(t,\mathbf{c}),t) = g_{\theta}(\mathsf{v}(t,\mathbf{c}),t,\mathbf{c})$$

INODE Framework: Algorithm

Step 1: Operator preprocessing:

• Compute $v = \mathcal{F}(u)$ from training data.

Step 2: Learning the ODE:

• Train neural network f_{θ} to minimize the discrepancy between observed trajectories u(t, c) and predicted trajectories $f_{\theta}(v(t, c))$:

$$\min_{f_{\theta}} \| \mathsf{u}(t,\mathbf{c}) - f_{\theta}(\mathsf{v}(t,\mathbf{c})) \|$$

This is a classic regression problem

Step 3: Evaluation:

- Solve the ODE defined by g_{θ} to compute the predicted auxiliary function $\widehat{v}(t, \mathbf{c})$.
- Estimate the trajectory $\widehat{u}(t, \mathbf{c}) = f_{\theta}(\widehat{v}(t, \mathbf{c}))$.

Preliminary Experiment Results

- u(z,c) is the evolution of a beam in a linear particle accelerator
- *z* is the longitudinal position of the beam (equivalent of *t* in the equations above)
- $c \in \mathbb{R}^{108}$ is a control parameter of the simulation

Goal:

• Learn $c \rightarrow u(\cdot, c)$

Method:

• Learn
$$\widehat{f}$$
 s.t. $u(z,c) = \widehat{f}\left(\int_{s=0}^{z} u(s,c) \, \mathrm{d}s, z, c, \theta\right)$

Dataset

- Linac dataset ThomX-2024 contains 4000 simulations generated by Astra.
- Control settings dimension (c) is 36 Purwar-2023.
- Each trajectory consists of 4000 points: $(t_j, u(t_j, \mathbf{c}_j)), t_j \in [0, 9.393].$

Experiment Set-up

• Compare three variants against baselines (LSTM, NODE).

Performance Measurement

• Use the coefficient of determination R^2 to evaluate model performance:

$$R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

Preliminary Results

LSTM

(The orange curve represents the ground truth trajectory)

INode Framework:

- Extends Neural ODEs to handle systems with discontinuous behavior.
- Efficient for data-driven ODEs, avoiding the need to directly solve complex ODEs during training.
- Uses integral operators to process input data, addressing challenges of discontinuities. **Other families of operators could be explored !**

Key Results:

- Theoretical guarantees
- Improved computational efficiency
- Provides a foundational approach that can be extended for future work

Thanks you for your attention

Bibliography