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Theoretical introduction and Higgs boson 
physics overview



The Standard Model of particle physics

4

● Fermions are the building blocks of matter
They are divided into quarks (sensitive to the strong 
interaction) and leptons

● Gauge bosons support the interactions between 
them : the strong, weak and electromagnetic forces

● The Higgs boson is notably linked to the mass of the 
other particles

● The Standard Model (SM) describes and classifies the known elementary particles and their 
interactions. It’s a quantum field theory based on the gauge invariance principle



Higgs mechanism
● The Higgs mechanism explains the mass of the weak interaction bosons 

by the spontaneous breaking of the gauge symmetry
→ The Higgs field is a scalar field with non-zero vacuum expectation value
→ Other particles acquire their mass by interacting with this field

● The Higgs boson is an excitation of this field
It’s a scalar massive particle that was discovered in 2012
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 Phys.Lett. B716 (2012) 1-29

https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7214


Higgs boson

The Higgs boson has been intensively studied since its discovery

● What we know :
○ Mass : mHiggs = 125.25 土 0.17 GeV

○ Spin parity = 0+ - other possibilities excluded at 99% CL

○ Production modes, decay channels
→ Couplings to heavy particles

→ Everything agree with the SM prediction for now
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● What remains to discover : 
○ Couplings to lighter fermions
○ Higgs self coupling 

Nature 607, 52-59 (2022)

https://arxiv.org/abs/2207.00092


Higgs boson self coupling
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● Di-Higgs boson production (HH) allows a direct access to Higgs boson self coupling, a crucial 
parameter of the Higgs mechanism
→ Difficult to probe since di-Higgs SM production rate is really low (σH ≃ 2000 ✕ σHH)

○ Multiple decay channels must be combined to look for it
Main ones : bbbb, bbττ and bbγγ

● For now only upper limits have been set but we look for any deviations from SM predictions as it 
could indicate new physics
→ Di-Higgs is an major objective for HL-LHC 

arXiv:2406.09971v2

https://arxiv.org/abs/2406.09971


● The SM does not describe all phenomena and has some shortcomings :
○ Does not provide a dark matter particle candidate
○ Does not explain neutrino oscillation
○ The ‘Hierarchy problem’ coming from Higgs boson divergent radiative corrections

→ BSM physics consists in a variety of theoretical models that intend to fix (some of) the SM 
problems

●  The Higgs sector is a promising place to look for BSM
 physics

○ Deviations from SM predictions could be observed
 in the Higgs properties 

○ Some models (supersymmetry …) extend the Higgs
sector by introducing new particles which
could be directly detected at the LHC
→ additional scalar sector

Beyond Standard Model (BSM) physics
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e.g hMSSM exclusion limits 
ATL-PHYS-PUB-2024-008

https://cds.cern.ch/record/2898861


The ATLAS experiment



The Large Hadron Collider (LHC)

● The study of the Higgs boson requires high energy collisions

● This is done at the LHC at CERN
○ 27 km ring situated 100m underground
○ Proton-proton collisions up to 14 TeV
○ 4 detectors study the collisions : CMS, ALICE, LHCb and ATLAS
○ Different phases of operation :
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Run 3 (2022-2025) :
Already 149 fb-1 of 

collisions at 13.6 TeV

Run 2 (2015-2018) :
140 fb-1 of collisions at 13 TeV

Used for X →SH→bbγγ analysis

High Luminosity (HL-LHC) (from 2029) :
expect 3000 fb-1 of 14 TeV collisions

Prospective b-tagging studies



The ATLAS Experiment
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● ATLAS is a multipurpose detector that can study the Higgs boson, provide SM precision 
measurements and look for new physics

● 44m long, 25m tall, 7000 tons
Four major components :

○ Inner Detector (ID) : trajectory 
reconstruction

○ Electromagnetic and hadronic
calorimeters to measure particles
energy
→ Photons and electrons reconstruction
→ Jet reconstruction (collimated stream
of hadrons coming from a quark production)

○ Muon Spectrometer to detect muons

○ Magnet system : bend charged particles trajectories and measure their impulsion



HL-LHC ATLAS and the Inner Tracker (ITk)

● The instantaneous luminosity will be increased during the HL-LHC era
→ More pile-up (i.e additional low energy interactions during beam crossings) : 
from ~33 during Run-2 to up to 200 during HL-LHC

○ Busier environment (more tracks)
○ More radiation damage : HL-LHC fluence ~ 10 times larger than during Run 3

● The ATLAS detector will be upgraded and the ID will be replaced by ITk
○ 181 m² all-silicon detector with pixel and strip sensor types
○ Extended forward coverage from |η| = 2.5 to 4

12



Adaptation of a neural network algorithm 
for flavour tagging at HL-LHC 



Flavour tagging
● Flavour (or b) tagging is the process of identifying the flavour of the 

quark at the origin of a jet
It is essential for Higgs physics and analyses with b-jets in the final state

● Use b-hadrons properties to identify b-jets :
○ Long lifetime → secondary vertex (SV) displaced from the primary 

vertex (PV) 
○ Tracks coming from the SV have large transverse d0 and 

longitudinal z0 impact parameters (IP) with respect to the PV
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ATL-PHYS-PUB-2020-014

https://cds.cern.ch/record/2718948


b-tagging algorithms in ATLAS
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● DIPS is an impact parameter based algorithm
● Objective : train DIPS on the ITk upgrade configuration

○ Already done for older algorithms (IP3D, SV1, MV2)
○ Maintain (and possibly improve) b-tagging performance with harsher HL-LHC conditions

Used for full Run 2 analyses

● ATLAS b-tagging algorithms :
○ ‘Low’ level algorithms (IP / SV based) - use IP/SV information separately 
○ ‘High’ level algorithms - combine low level outputs to provide final b-tagging discriminant
○ More recently, GN1 is a graph neural network algorithm using tracks information

Used for Run 2 analyses with Run 3 software



DIPS 
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● DIPS is a deep set neural network algorithm 
that takes tracks features as inputs
They notably include the IP significances and 
the number of hits in certain layers of the 
detector

DIPS architecture
● A first network Φ handles each tracks 

inputs 
● A second network F sums the different 

tracks and gives as an output the jet 
probability to be light / c / b flavoured



Jet selection
● Jet selection :

○ pT > 20 GeV and |η|<4
○ Some selections criteria needed to emulate future upgrade performance :

→ Reconstructed jets must be matched to a true jet to remove pile-up jets
→ Good PV reconstruction criteria (|truth PV - reconstructed PV| < 0.1 mm)

● DIPS training is done with tt and Z’ MC samples naturally rich in (b)-jets
The training dataset is made of hybrid samples (70% tt, 30% Z’) designed to cover a large pT spectra
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pT < 250 GeV
tt

pT > 250 GeV
Z’



Flavour tagging performance

● Flavour tagging performance is evaluated with a ROC curve
A discriminant is built from the algorithms output flavour probability

  where fc balances light and c-jet rejection
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A threshold is determined on the 
discriminant distribution
→ All jets with a score above this threshold 
are tagged as b-jets, other ones are 
rejected

→ A ROC curve shows the c and light jet 
rejection as a function of b efficiency 
parameterised by the threshold value
 

ATL-PHYS-PUB-2020-014

https://cds.cern.ch/record/2718948


Upgrade DIPS performance
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● DIPS performs much better than IP3D (older 
algorithm previously optimised for upgrade)

● DIPS performance degrades with η as expected 
because of the decreasing IP resolution
Performance is a bit worse than Run-2 DIPS in the 
central region 



DIPS preprocessing and training

● Two methods are tested :
○ Count / undersampling : 

scale the number of jets to the minority class
(c-jets)

○ pdf : target b-jet distribution and use
a mix of under and oversampling

● 3M training jets with count, 15M with pdf
Keep current Run-2 DIPS architecture
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picture from Kaggle

● The training dataset needs to have
equal flavour repartition in pT and
η bins
→ this is obtained with a procedure 
called resampling

https://www.kaggle.com/code/rafjaa/resampling-strategies-for-imbalanced-datasets?scriptVersionId=1756536&cellId=12


Tracks selection
● The selection of the tracks used by the network can influence the performance 

 A Tight and a Loose selection are defined and tested
They differ by different selection criteria on pT and transverse and longitudinal IP d0 and z0
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● Max. 40 tracks per jet

Mean values :
around 5 tracks / jet for Tight,
around 7 tracks / jet for Loose



Results and trainings comparison
● The different tracks selection and 

resampling methods are compared :

○ Loose tracks selection better than 
Tight

○ pdf resampling method better 
than count

○ The Loose + pdf configuration 
provides the best performance
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Global b-tagging performance in HL-LHC
● The selected DIPS model can then be used to perform an 

upgrade DL1d training
The graph neural network based algorithm GN1 is also 
trained on the upgrade configuration
Their performance is summed up in the 
ATL-PHYS-PUB-2022-047 ATLAS public note

● ‘All inclusive’ graph neural network GN1 provides better 
results than the high level algorithm DL1d
Future developments for flavour tagging at HL-LHC focus 
on the graph neural network approach
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https://cds.cern.ch/record/2839913


Search for two additional scalar particles in the
X → S(→bb̄) H(→γγ) channel 



● This analysis targets an asymmetric decay X→S(→bb)H(→γγ) where X and S are new scalar bosons. 
and H is the SM Higgs boson
Some theoretical models predict this phenomenology :
→ 2HDM with a complex or scalar singlet, NMSSM, TRSM …

○ The search is model independent in order
 to be as general as possible

○ Only assumption made is signal generation
with narrow width approximation

● Probed mass space :
170 < mX < 1000 GeV and 15 < mS < 500 GeV
Link with the HH bbγγ analysis

Analysis presentation
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Dataset and event selection

● ATLAS Run-2 data (140 fb-1 at 13 TeV) is used

● Use diphoton trigger which requires event to have ET > 35 (25) GeV for the leading (subleading) 
photon

● The event selection is :
○ Two ‘Tight’ reconstructed and isolated photons which must also check

105 < mγγ < 160 GeV and pT(γ1) >  0.35 mγγ - pT(γ2) > 0.25 mγγ to target the H→γγ decay

○ No lepton and between 2 and 5 central jets to reduce ttH background

○ One or two b-tagged jets at the 77% efficiency working point depending on the signal
■ The b-tagger used is DL1r

26



Different search regions

● A challenging situation arises when mS << mX : S is boosted and the b-jets coming from its decay 
are collimated and can be reconstructed as only one jet
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ΔR = 0.4 : standard angular size of 
reconstructed jets in ATLAS

● The search space is separated between a resolved region 
with exactly 2 b-tagged jets and a merged region with 
exactly 1 b-tagged jet

2 b-tagged
region

1 b-tagged
region

Fraction of events in the 2 
b-tagged region



The bb𝛾𝛾 channel

● Main backgrounds :
○ Non-resonant γγ+jets events
○ Resonant single Higgs : ttH, ggH, ZH and also

VBF H in the 1 b-jet region

● Total number of selected events :
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SR

● Use the mγγ distribution to define :
○ A signal region (SR) between 

120 < mγγ< 130 GeV
○ Control region sidebands (SB) on 

the side

Phys. Rev. D 106, 052001 (2022)

SB

SB

https://arxiv.org/abs/2112.11876


PNN discriminant
● Parameterised neural networks (PNN) are used to 

discriminate signal from background in the SR
→ They use a vector of parameters θ in addition to 
the input event features vector x
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● One PNN in each signal region 
○ 2 b-tagged region : θ = (mS, mX), x = (mbb, mbbγγ*), 
○ 1 b-tagged region : θ = (mX), x = (pT

b, mbγγ*)

● Training includes events from both the SR and the SB
Training samples :

○ γγ+jets, ttH, ZH, ggH and corresponding region signals
VBF H and HH also included in the 1 b-tagged region

● PNN output is a score between 0 and 1

mbbγγ* = mbbγγ - (mγγ - 125 GeV)
mbγγ * = mbγγ - (mγγ - 125 GeV)

Several NNs One PNN



Background modelling and MC - data agreement

● Background PNN distributions come from MC samples
● Data - MC agreement in the PNN shape is checked in the SB

The sideband distribution is used to normalize the γγ+jets process
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Systematic uncertainties

● Main sources of experimental systematic uncertainties include particle identification (e.g flavour 
tagging) and pT and energy scale and resolution of the different objects

○ It changes the number of events in the SB and SR regions 
○ It modifies the position and width of the peak in the mbb and mbbγγ distributions and 

eventually the shape of the PNN distribution

Experimental systematics are computed with dedicated variables that give the calibrated 土1σ 
combined performance values
→ Taken into account for signal, major single Higgs, HH, γγ+jets and Z(qq)γγ processes

● Theoretical systematic uncertainties :
○ SM parameters uncertainties (e.g αS , QCD scale, branching ratio, PDF values)

→ Might affect processes production cross-section
○ Parton shower modelisation by the MC generator
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Experimental systematic uncertainties - Background values

● Systematic uncertainties variations to the PNN distribution are categorised through yield and 
shape changes
Yield changes reflect the impact on selection and change with respect to nominal value
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● This table shows the yield relative 
difference with respect to nominal value 
(in %) for the main background samples
NB : γγ+jets normalization fixed by SB

● Major uncertainties are flavour tagging and 
jet energy resolution
Relative difference remains below 10%



Experimental systematic uncertainties - Signal values

● For signal, the experimental systematic values depend on mX and mS
● Change is relatively constant for photon systematics because photons all come from the H→γγ 

decay
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Experimental systematic uncertainties - Signal values
● Relative difference is higher at low mass for flavour tagging

● Lower mass → lower jet pT → higher flavour tagging uncertainties
34

Eur. Phys. J. C 79 (2019) 970

https://arxiv.org/abs/1907.05120


● Similarly, relative difference is higher at low mass for jet energy resolution

● Lower mass → lower jet pT → higher jet energy resolution uncertainties

 

Experimental systematic uncertainties - Signal values
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Eur. Phys. J. C 81 (2021) 689

https://arxiv.org/abs/2007.02645


Experimental systematic uncertainties - PNN shape variations

● Example of shape changes in the PNN distribution for one jet energy resolution uncertainty in the 
γγ+jets and signal samples
The variation in the last signal like bin doesn’t exceed 10%

36

Signal γγ+jets background



● Results are obtained with a binned likelihood fit on the PNN shape distribution

Analysis results
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𝜃 : nuisance parameters

● Systematic uncertainties are taken into account in the fit as nuisance parameters



Analysis results - Experimental uncertainties impact

● Systematic uncertainties impact can be assessed by comparing blinded limits obtained when they 
are taken into account to when they are not
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● Experimental uncertainties impact is really low at high mass (below 1%) but can reach 
20% at low mass due to large signal uncertainties

Impact at low mX Impact at high mX



Analysis results - Signal significance
● Discovery statistical tests are performed for every considered mass point

The largest excess with respect to the background only hypothesis is observed for 
(mX , mS) = (575, 200) GeV
Local (global) statistical significance is 3.5σ (2.0σ)

● No excess is noticed for (mX , mS) = (650, 90) GeV where CMS observed a local (global) 3.8σ (2.8σ) 
deviation
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Analysis results - Limits

● Limits are set on the production cross section times bbγγ branching ratio in the mass space
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● Limits range from 0.09 fb at high mass to 39 fb at low mass
Best sensitivity achieved in the high mass region thanks to a better signal efficiency

Limits at low mX Limits at high mX



Analysis perspective 

● The analysis has been submitted to JHEP
Preprint is already available arXiv:2404.12915

● New perspectives will be offered with the upcoming Run 3 data
○ Already more statistics than Run 2, which will allow to shed more light on the 

observed excesses

○ The analysis techniques developed for the bbγγ final state can be useful for 
the HH research in the same channel

41

https://arxiv.org/abs/2404.12915


Conclusion

● Training of a b-tagging neural network algorithm with the HL-LHC configuration
○ Run 3 and HL-LHC will greatly increase the available data statistics 

→ Crucial to study and optimize future detector performance
○ DIPS obtains better performance compared to previous upgrade studies
○ Future developments will focus on the graph neural network approach

● Research of two additional scalar bosons in the X → SH → bbγγ channel
○ First analysis to probe an uncharted phase space for low mS and mX values
○ Systematic uncertainties impact is assessed over the whole mass space
○ Largest deviation of 3.5σ (2.0 global) at (mX , mS) = (575, 200) GeV

→ No deviation observed for CMS 3.8σ local excess at (mX , mS) = (650, 90) GeV
○ Limits from 0.09 to 39 fb are set on the production cross section in the bbγγ 

channel
42



Backup



Di-Higgs production

● Interfering ‘triangle’ and ‘box’ diagrams for ggF HH production - σggF(HH) = 31 fb

● VBF HH production also allows to probe κV and κ2V - σVBF(HH) = 1.73 fb

44

Phys. Rev. D 106, 052001 (2022)

https://arxiv.org/abs/2112.11876


Luminosity and pile-up at (HL)-LHC

● Mean pile-up throughout LHC runs - latest 
plot available here

● Integrated luminosity per year
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3


ITk tracking dependence in |η|

● ITk material distribution expressed in 
radiation lengths (X0) in function of 
pseudorapidity |η|

● Transverse IP resolution as a function of 
|η| 

46

ATL-PHYS-PUB-2021-024

https://cds.cern.ch/record/2776651


DIPS tracks inputs

● Distribution of the number of tracks per jet in the Tight (left) and Loose (right) tracks selection
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DIPS tracks inputs

● Tracks origin in tt samples for Tight (left) and Loose (right) tracks selection (flavour inclusive)
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DIPS upgrade training metrics

● Training loss evaluated on the training and validation sets
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Count training w/ loose 
tracks selection

pdf training w/ loose 
tracks selection



Upgrade DIPS additional performance plots

● Performance evaluation on Z’ samples
(probes high pT jets)
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Upgrade DIPS additional performance plots

● Performance pT dependence
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Upgrade DIPS additional performance plots

● Fraction scan plots shows the balance between light and c-jet rejection with curves 
parameterized by fc
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Graph neural network b-tagging algorithms

● GN1 inputs for upgrade training
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● Increase in performance allowed 
by GNNs for Run 2 and Run 3   
FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


Signal selection efficiency

● Signal selection efficiency in the 1 b-tagged (left) and 2 b-tagged (right) jet regions
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Expected number of events

● Obtained from a background only fit in the 2 b-tagged (left) and 1 b-tagged (right) jet 
regions
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PNN inputs

● 2 b-tagged region PNN inputs distribution

56



PNN inputs

● 1 b-tagged region PNN inputs distribution
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mγγ fit strategy

● Sensitivity comparison (expected limits) between the different analysis strategy
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Data - MC agreement

● 2 b-tagged region PNN inputs sidebands distribution
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mbbyy* mbb



Data - MC agreement

● 1 b-tagged region PNN inputs sidebands distribution
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pT
bmbyy*



Systematic uncertainties

● Summary table of experimental and theoretical systematic uncertainties taken into 
account in the analysis 
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Theoretical uncertainties impact

● Theoretical systematic uncertainties impact on the limit
They are dominated by the γγ+jets modelling uncertainty
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● The impact on the limit can be as large as 20% in the 2 b-tagged region and 40% in the 1 b-tagged 
region

Impact at high mXImpact at low mX



Jet pT

● Signal leading jet pT distribution for two different mass points
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(mX , mS) = (750, 300) GeV(mX , mS) = (190, 50) GeV



Ranking plots

● Example of ranking plots showing the impact on the fit of the 15 more important NP in two points
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(mX , mS) = (250, 100) GeV - 2 b-tagged region (mX , mS) = (230, 15) GeV - 1 b-tagged region



Interpolation
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● Required granularity is assessed with 
signal injection tests to be sure not to 
miss any signal

● For the red points, kinematic distributions 
are interpolated and used to compute PNN 
scores



PNN and interpolation
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● Example of PNN distribution in the 1 
b-tagged region
(mX , mS) = (1000, 70) GeV

● PNNs are sensible to signals with masses 
close to their parameters



Post-fit PNN distributions

● SR post-fit PNN distribution for (mX , mS) = (250, 100) GeV (left - 2 b-tagged region) and (mX , mS) = 
(1000, 70) GeV (right - 1 b-tagged region)
NB : signal distributions in blue normalised to σ = 1 fb
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Expected limits
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Low mX High mX



CMS S/YH → bbγγ analysis

● JHEP 05 (2024) 316
● Mass range probed :

260 < mX < 1000 GeV, 90 < mS / mY  < 800 GeV

→ 6 different BDT in different  (mX , mS) regions to
discriminate signal from non resonant background
→ For  mX < 550 GeV DNN to discriminate signal from
Resonant background
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● Results obtained with a max. likelihood fit 
of the
mγγ  and mjj  distributions

Limits from 0.04 to 0.90 fb 

https://arxiv.org/abs/2310.01643v2


CMS results - 3.8σ local excess

● Logal (global) 3.8σ (below 2.8σ) excess at 
(mX , mS) = (650, 90) GeV

● We perform a signal injection at the same 
point with a signal cross section of 0.35 fb 
(CMS best fit value)

This signal injection gives an expected 
local excess of 2.7 standard deviation 
whereas we do not see any excess with 
respect to the background only 
hypothesis (p0 > 0.5)
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Other X → SH results in different channels

● CMS combination of bbγγ, bbττ and 4b channels arXiv:2403.16926
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https://arxiv.org/abs/2403.16926


Non resonant HH analysis

● Resonant + non resonant HH → bbγγ paper Phys. Rev. D 106 (2022) 052001
Legacy non resonant HH → bbγγ paper JHEP 01 (2024) 066
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https://arxiv.org/abs/2112.11876
https://arxiv.org/abs/2310.12301

