Interplay of ALP couplings at a Future Muon Collider

Sudhakantha Girmohanta

Aug 07, 2024

Based on:

RENCON

DUV

1. S. Chigusa, S. Girmohanta, Y. Nakai and Y. Zhang JHEP 01, 077 (2024)

ALP EFT Framework

The Axion Quest 2024

ALP EFT Framework

* ALP (*a*) : CP-odd pNGB of spontaneously broken global U(1) at a scale f_a .

ALP EFT Framework

* ALP (*a*) : CP-odd pNGB of spontaneously broken global U(1) at a scale f_a .

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{1}{2} m_{a}^{2} a^{2} - c_{W} \mathscr{A}_{\widetilde{W}} - c_{B} \mathscr{A}_{\widetilde{B}} - c_{G} \mathscr{A}_{\widetilde{G}} - \frac{c_{a\Phi}}{2} \frac{\partial_{\mu} a}{f_{a}} \sum_{\psi = Q,L} \bar{\psi} \gamma^{\mu} \gamma_{5} \sigma_{3} \psi + \text{h.c.}$$

$$\frac{\text{ALP-gauge}}{\text{boson coupling}} \mathscr{A}_{\widetilde{X}} = \left(\frac{\alpha_{X}}{4\pi}\right) \frac{a}{f_{a}} X_{\mu\nu} \widetilde{X}^{\mu\nu} ; X \in \{B, W, G\}$$

$$\frac{\text{ALP-fermion}}{\text{coupling}}$$

 We are interested in ALP with m_a and f_a ~ TeV [composite models, extradimensional models, heavy axion models...]
 Rubakov (1997), Fukuda+(2015), Gherghetta+(2016), Gaillard+(2018)...

$$\tau(a \to t\bar{t}) \sim 10^{-25} \mathrm{s} \left(\frac{f_a/\mathrm{TeV}}{c_{a\Phi}}\right)^2 \left(\frac{\mathrm{TeV}}{m_a}\right)$$
 ALP decays promptly

✤ A multi-TeV muon collider has great potential to explore TeV-scale ALPs.

The Axion Quest 2024

Motivation: TeV scale ALPs Choi PRL 92 101602 (2003) Cox et. al. JHEP 01 188 (2020) Lee et. al. JHEP 03 038 (2022)

- Simultaneous solution of the QCD axion quality problem and electroweak naturalness problem using a doubly composite dynamics.
- **♦** Consequence: TeV scale KK axion with ~ TeV scale decay constant.

Related works: Multi-brane cosmology

Muon Collider & TeV scale ALPs

The Axion Quest 2024

Muon Collider & TeV scale ALPs

- Synchrotron energy loss ($\propto m_{\mu}^{-4}$) much smaller than electrons.
- * Circular design can achieve high luminosity with multi-TeV \sqrt{s} .
- Significant beam energy is carried by fundamental muons, advantageous for producing TeV scale ALPs.
- **Multiple production channels** through VBF and $\mu^+\mu^-$ annihilation.
- * Less overall background with larger \sqrt{s} as inclusive cross-section remains small.

DiPetrillo's talk PASCOS 2024

Muon Collider & TeV scale ALPs

- Synchrotron energy loss ($\propto m_{\mu}^{-4}$) much smaller than electrons.
- * Circular design can achieve high luminosity with multi-TeV \sqrt{s} .
- Significant beam energy is carried by fundamental muons, advantageous for producing TeV scale ALPs.
- **Multiple production channels** through VBF and $\mu^+\mu^-$ annihilation.
- * Less overall background with larger \sqrt{s} as inclusive cross-section remains small.
- Beam induced background (BIB) poses significant challenge.
- Recent progress in 1.5 TeV detector design and dedicated mitigation of BIB.

DiPetrillo's talk PASCOS 2024

The Axion Quest 2024

Tops of ALPs

The Axion Quest 2024

Tops of ALPs

* Studies have focussed on the ALP-EW gauge boson interactions. *Bao et. al. (2022) Han et. al. (2022)*

High energy muon collider is also a VBF machine: cross-section enhancement ~ $\ln(\hat{s}/m_V^2)$.

Tops of ALPs

 Studies have focussed on the ALP-EW gauge boson interactions.
 Bao et. al. (2022) Han et. al. (2022)

- ALP-fermion and gluon couplings are present in general and modify the phenomenology drastically.
- * TeV scale ALPs dominantly decay to $t\bar{t}$ when $c_{a\Phi} \sim \mathcal{O}(1)$.
- ***** How large can these couplings be?

High energy muon collider is also a VBF machine: cross-section enhancement ~ $\ln(\hat{s}/m_V^2)$.

The Axion Quest 2024

Unitarity as a guiding principle

The Axion Quest 2024

Unitarity as a guiding principle

* ALP EFT operators lead to rapid increase in scattering amplitude of $2 \rightarrow 2$ processes with CM energy $\sqrt{s} \implies$ constrained by partial wave unitarity.

$$\left(\frac{\alpha_s}{4\pi}\right) \left|c_{G}\right| \lesssim 0.3 \left(\frac{f_{a}}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right) \quad \left(\frac{\alpha_2}{4\pi}\right) \left|c_{W}\right| \lesssim 2.1 \left(\frac{f_{a}}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right)$$

$$Brivio \ et. \ al. \ (2021)$$

$$ALP-fermion \ coupling \ loosely \ constrained$$

$$\left(\frac{\alpha_1}{4\pi}\right) \left|c_{B}\right| \lesssim 2.7 \left(\frac{f_{a}}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right) \quad \left(\left|c_{a\Phi}\right| \lesssim 30 \left(\frac{f_{a}}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right) \right)$$

Unitarity as a guiding principle

★ ALP EFT operators lead to rapid increase in scattering amplitude of $2 \rightarrow 2$ processes with CM energy $\sqrt{s} \implies$ constrained by partial wave unitarity.

$$\left(\frac{\alpha_s}{4\pi}\right) \left|c_{G}\right| \lesssim 0.3 \left(\frac{f_a}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right) \qquad \left(\frac{\alpha_2}{4\pi}\right) \left|c_{W}\right| \lesssim 2.1 \left(\frac{f_a}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right)$$

$$Brivio \ et. \ al. \ (2021)$$

$$ALP-fermion \ coupling \ loosely \ constrained$$

$$\left(\frac{\alpha_1}{4\pi}\right) \left|c_{B}\right| \lesssim 2.7 \left(\frac{f_a}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right) \qquad \left(\left|c_{a\Phi}\right| \lesssim 30 \left(\frac{f_a}{\text{TeV}}\right) \left(\frac{\text{TeV}}{\sqrt{s}}\right) \right)$$

Simplified benchmark parameters to explore ALP-fermion couplings.

c_W	c_B	c_G	$ c_{a\Phi} /f_a [\text{TeV}^{-1}]$	$m_a \; [\text{TeV}]$	
0	0	0	6	1	

* Contribution to top chromomagnetic moment $\hat{\mu}_t \sim -7 \times 10^{-4}$, well below the CMS bound $-0.014 < \Re(\hat{\mu}_t) < 0.004$. Contribution to $g_{\mu} - 2$ negligible.

The Axion Quest 2024

Top associated ALP production

The Axion Quest 2024

Top associated ALP production

Top associated ALP production

The Axion Quest 2024

Analysis Strategy : top-jet identification

The Axion Quest 2024

Analysis Strategy : top-jet identification

- We utilize hadronic decays of the top and identify
 boosted top-jet candidate using jet reconstructed mass.
- In hadron colliders, due to smaller partonic energy for 4top events, analysis with leptonic decays is preferable.

ATLAS (2023), CMS (2023)

Analysis Strategy : top-jet identification

- We utilize hadronic decays of the top and identify
 boosted top-jet candidate using jet reconstructed mass.
- In hadron colliders, due to smaller partonic energy for 4top events, analysis with leptonic decays is preferable.
 ATLAS (2023), CMS (2023)

- * Short muon lifetime $(2.2 \ \mu s) \Longrightarrow$ decay products and secondary interactions give rise to beam induced background (BIB).
- Challenge: separating true jets from BIB fake-jets.
- ◆ Use **BIB characteristics** to discriminate. *Muon collider collaboration (2022)*

 \mathbf{M} Low transverse momenta p_{T} .

MDisplaced origin.

Asynchronous time of arrival.

 \mathbf{M} High absolute pseudo-rapidity η .

The Axion Quest 2024

BIB Reduction and Backgrounds

The Axion Quest 2024

BIB Reduction and Backgrounds

Muon collider collaboration (2022)

- * Jet selection (n_{jet}) : jets with $|\eta| < 1.5$ and $p_{T,jet} > 50$ GeV. Efficiency ~ 0.9.
- ◆ Top candidate (n_{top}) : Selected jets with 140 GeV ≤ m_j ≤ 220 GeV.

BIB Reduction and Backgrounds

Muon collider collaboration (2022)

- * Jet selection (n_{jet}) : jets with $|\eta| < 1.5$ and $p_{T,jet} > 50$ GeV. Efficiency ~ 0.9.
- ★ Top candidate (n_{top}) : Selected jets with 140 GeV ≤ m_j ≤ 220 GeV.
- ♦ We demand $n_{top} \ge 3$ for signal events.
- Trims down plethora of backgrounds with less number of top candidates.
- * **Dominant backgrounds considered:** SM $t\bar{t}t\bar{t}$, $t\bar{t}W^+W^-$, $t\bar{t}h$, $t\bar{t}Z$.

The Axion Quest 2024

Event selection and cut-flow

The Axion Quest 2024

Event selection and cut-flow

Event selection and cut-flow

cut processes	tīta [Signal]	$t\bar{t}t\bar{t}$	$t\bar{t}W^+W^-$	$t ar{t} h$	$t\bar{t}Z$
origin	9015	2285	46510	32380	15790
$n_{ m top} \geq 3$	495~(5.5%)	82 (4%)	37~(0.1%)	26~(0.1%)	3~(0.02%)
$n_{ m jet} \geq 4$	417 (4.6%)	65~(2.8%)	19 (0.04%)	< 1	< 1

The Axion Quest 2024

Cut-flow

The Axion Quest 2024

Cut-flow

 $\sqrt{s} = 10 \text{ TeV}, m_a = 1 \text{ TeV}, \mathscr{L} = 100 \text{ ab}^{-1}, c_{a\Phi}/f_a = 6 \text{ TeV}^{-1}$

processes cut	tīta [Signal]	$t\bar{t}t\bar{t}$	$t\bar{t}W^+W^-$	$t ar{t} h$	$t \bar{t} Z$
origin	6625	1509	34970	12300	67730
$n_{ m top} \geq 3$	784 (12%)	146 (10%)	49 (0.1%)	9 (0.1%)	61 (0.1%)
$n_{ m jet} \geq 4$	757 (11%)	136 (9%)	24 (0.1%)	< 1	7 (0.01%)

Cut-flow

 $\sqrt{s} = 10 \text{ TeV}, m_a = 1 \text{ TeV}, \mathscr{L} = 100 \text{ ab}^{-1}, c_{a\Phi}/f_a = 6 \text{ TeV}^{-1}$

processes cut	tīta [Signal]	$t\bar{t}t\bar{t}$	$t\bar{t}W^+W^-$	$t \overline{t} h$	$t \bar{t} Z$
origin	6625	1509	34970	12300	67730
$n_{ m top} \geq 3$	784 (12%)	146 (10%)	49 (0.1%)	9 (0.1%)	61 (0.1%)
$n_{ m jet} \geq 4$	757 (11%)	136 (9%)	24 (0.1%)	< 1	7 (0.01%)

- * Notice top reconstruction improves with increasing \sqrt{s} .
- Effective reduction of background using n_{top} and n_{jet} .
- * ALP decay: two top-jets with least $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ selected.
- Solution Use of boosted top jets allows us to reconstruct the resonance peak in dijet invariant mass distribution m_{jj}.

The Axion Quest 2024

Dijet invariant mass distribution

 $m_a = 1 \text{ TeV}$

Need to perform **fitting of this distribution** to evaluate signal significance. *

The Axion Quest 2024

Statistical Treatment

The Axion Quest 2024

Statistical Treatment

* λ_i : Expected no. of events in the *i*th bin.

Statistical Treatment

* λ_i : Expected no. of events in the *i*th bin.

$$b_i : \text{smooth} \\ \textbf{distribution} \qquad \lambda_i = \sum_{k=0}^3 \beta_k \left(m_{jj}^{(i)} \right)^k + A \exp\left(-\frac{\left(m_{jj}^{(i)} - m_0 \right)^2}{2\sigma^2} \right) \qquad s_i : \text{peak} \\ \textbf{structure} \end{cases}$$

* Prepared simulation data for multiple ALP mass m_a . Best fit gives:

 $\tilde{\lambda}_i(\mu) = \tilde{b}_i + \mu \tilde{s}_i$; $\tilde{\lambda}_i(\mu = 1)$: Expected events for ALP model.

* \tilde{b}_i contains both SM background + smooth contribution from intermediate ALP \implies robust against possible systematics altering the smooth dijet distribution.

Likelihood function:

$$L(\mathbf{o};\mu) = \prod_{i=1}^{N_B} \frac{e^{-\tilde{\lambda}_i(\mu)} \tilde{\lambda}_i(\mu)^{o_i}}{\Gamma(o_i+1)}$$

 o_i : histogram data $N_{\rm B}$: No. Of bins

The Axion Quest 2024

Test statistic

The Axion Quest 2024

Test statistic

Test-statistic :

$$q_0 = -2 \ln \frac{L(\mathbf{o}; \mu = 0)}{L(\mathbf{o}; \mu = 1)}$$

Wilks theoremAsymptotically obeys
$$\chi^2$$
 distribution with d.o.f = 1. 5σ CL : $\sqrt{q_0} = 5$

The Axion Quest 2024

Test statistic

Wilks theorem $q_0 = -2 \ln \frac{L(\mathbf{o}; \mu = 0)}{L(\mathbf{o}; \mu = 1)}$ Asymptotically obeys **Test-statistic :** χ^2 distribution with d.o.f = 1. 5σ CL : $\sqrt{q_0} = 5$ 20**Reduction in phase** space. **Low** m_a : tops from 15 **ALP decay highly** better top-jet collimated in the lab reconstruction with \sqrt{s} . frame, clustered as Tev single jet. 15 1 STer Verified by finding peak in jet mass histogram at m_a . 5 5σ 1.5 1.0 2.0 2.5 3.0 m_a [TeV]

The Axion Quest 2024

Results

The Axion Quest 2024

Results

- * 5 σ reach in the coupling-mass plane? $\sqrt{q_0}$ does not scale with coupling. Non-trivial dependence on BG and jet-reconstruction efficiency.
- * Nevertheless, signal cross-section scales with $(c_{a\Phi}/f_a)^2$. Get coupling corresponding to $\sqrt{q_0} = 5$ for fixed m_a with the same BG.

Results

- * 5 σ reach in the coupling-mass plane? $\sqrt{q_0}$ does not scale with coupling. Non-trivial dependence on BG and jet-reconstruction efficiency.
- * Nevertheless, signal cross-section scales with $(c_{a\Phi}/f_a)^2$. Get coupling corresponding to $\sqrt{q_0} = 5$ for fixed m_a with the same BG.

Exploring the uncharted : work in progress

The Axion Quest 2024

Exploring the uncharted : work in progress $m_a = 1$ TeV, $\sqrt{s} = 5$ TeV, $c_G = 3$, $c_B = c_W$ 5 **Present talk** $f_{prod}^{(top)} \times Br(a \rightarrow t\bar{t}) \ge 50\%$ $f_{\text{prod}}^{(\text{VBF})} \times Br(a \rightarrow t\bar{t}) \ge 50\%$ **Production by VBF** $P_{\text{prod}}^{\ell(\text{VBF})} \times \text{Br}(a \to VV') \ge 50 \%$ 0.50 **but** $a \rightarrow t\bar{t}$ $\frac{|c_{a\phi}|}{|TeV^{-}}$ 0.10 - flop + 750° f_a 0.05 $f_{\text{prod}}^{(\text{VBF})} \times \text{Br}(a \to gg) \ge 50\%$ **Explore ALP-gluon coupling.** 0.01 L 0.01 0.10 10 100 **Challenge: Huge background from** $\frac{|c_W|}{f_a} [\text{TeV}^{-1}]$ EW jets in VBF production channel. Use of forward muons and jet-substructure can help. Analyzed by Bao et. al. (2022), Han et. al. (2022)

The Axion Quest 2024

Advertisement : Axion Quest Talk

Dr. Shota Nakagawa's talk on Friday Aug 09 at 3:30 PM

How Viable Is a QCD Axion near 10 MeV?

Sudhakantha Girmohanta, Shota Nakagawa, Yuichiro Nakai and Junxuan Xu

Tsung-Dao Lee Institute, Shanghai Jiao Tong University, No. 1 Lisuo Road, Pudong New Area, Shanghai, 201210, China School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

Conclusions

- Multi-TeV future muon collider can have great capability in probing TeV scale ALP parameter space.
- ALP-fermion couplings are naturally present and can change the phenomenology drastically.
- We utilized ALP-top coupling and analyzed the 4-top channel.
- Peak in the dijet invariant mass distribution could be reconstructed, thanks to the boosted top decay products in a muon collider.
- A large territory uncharted in the TeV ALP parameter space where the interplay of ALP EFT couplings can be interesting.

Thank you for your time! Questions?

Backup

Non-resonant ALP searches

Axion-Top coupling constraints

Production cross section

	$\left t\bar{t}a \right t\bar{t}t\bar{t} t\bar{t}W^{+1}$		$t\bar{t}W^+W^-$	$t ar{t} h$	$t\bar{t}Z$
$\sigma[{ m ab}]$	90	23	465	324	158

Dilaton phenomenology: rare meson decays S. Girmohanta, Y. Nakai, Y. Shigekami and K. Tobioka [JHEP 01, 153 (2024)]

Dilaton phenomenology: rare meson decays S. Girmohanta, Y. Nakai, Y. Shigekami and K. Tobioka [JHEP 01, 153 (2024)]

Light dilaton explanation of $g_{\mu} - 2$ anomaly is excluded. Distinction from Higgsportal scalar in the photon coupling is properly taken into account \rightarrow Belle II.

Probing the CP property of the dilaton at Belle II

Probing the CP property of the dilaton at Belle II

Imprint of the CP nature in $e^+e^- \rightarrow e^+e^-\phi$ with $\Delta \phi$.

 $\Delta \varphi$: Azimuthal angle between the outgoing e^+e^- .

Probing the CP property of the dilaton at Belle II

Imprint of the CP nature in $e^+e^- \rightarrow e^+e^-\phi$ with $\Delta \phi$.

 $\Delta \varphi$: Azimuthal angle between the outgoing e^+e^- .

Two benchmark points are shown where $\phi \rightarrow \mu^+ \mu^-$ and $\phi \rightarrow \text{inv}$.

