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Outline

• CP violation and electric dipole moments (EDMs)

• CP violating (and/or PQ breaking) UV sources 

• EDMs of light nuclei, diamagnetic atoms, and 
paramagnetic molecules / atoms 

• Disentangling UV sources by measurements of the 
EDMs
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An elementary particle or an atom can have permanent electric dipole 
moment (d) and magnetic dipole moment (𝜇) along the direction of its 
spin.

1  Introduction �

Magnetic and electric dipole moments (MDM and 

EDM) with spin S 

 

H = �µ B · S
S
� d E · S

S

P : E⇥ �E, B⇥ +B, S⇥ +S
T : E⇥ +E, B⇥ �B, S⇥ �S
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Under time (T) and space (P) reflections,  

Thus, the EDM is sensitive to CP violation under CPT 

invariance since it is P- and T-odd.  

EDM is known to a good probe to CP violation in 

particle physics models. 

A non-zero electric dipole moment (d) 
violates the 𝑃 and 𝑇(= 𝐶𝑃)	invariance, while 
a magnetic dipole moment (𝜇) does not. 

EM dipole moments of a particle

𝐻 = −𝜇 𝐵 ⋅
𝑆
𝑆
− 𝑑 𝐸 ⋅

𝑆
𝑆
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CP violation is an important condition to generate the asymmetry 
between matter and antimatter. 

Observed asymmetry : 𝑌! =
𝑛!
𝑠
∼ 10"#$

SM prediction : 𝑌!,	'( ≲ 10"#)

SM does not provide an enough CP violation, and we need 
new physics beyond the SM involving additional CP violation.

e.g.  Konstandin, Prokopec, G. Schmidt  ‘03
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EDM probes for New Physics

None of permanent electric dipole moments (EDMs) of any elementary 
particles and atoms has been observed so far.

Nuclear EDM/Schiff moment from nucleon level CP violation

Two leading contributions:

1) Nucleon’s intrinsic EDM:

2) Polarization of the nucleus:

+

-

Contribution from the nucleon EDM 

Contribution from the P, CP-odd nuclear force 

⇒ Spin expectation value (CP-even)

⇒ EDM generated by the CP-even ⇄ CP-odd mixing

p
n

pD(Nedm) =
1

2

AX

i=1

h | [(dp + dn) + (dp � dn)⌧
z
i ]�

z
i | i

D(pol) =
e

2

AX

i=1

h | (1 + ⌧zi )zi | ̃i+ (c.c.)

Nuclear EDM/Schiff moment from nucleon level CP violation
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SM prediction 𝑑! ∼ (10"#$𝛿%& + 10"'(	�̅�) e cm
𝑑) ∼ (10"**	𝛿%& + 10"$+	�̅�) e cm

Experimental status 𝑑, < 1.8	×	10"$(	e cm
𝑑) < 4.1×10"#-	e cm�̅� ≲ 10"'-  ß

(strong CP problem)

Abel et al ‘20
Roussy et al ‘22

Typical BSM 
prediction

𝑑! ∼
1

16𝜋$
𝑓.

Λ/0&$

	𝑑)∼
1

16𝜋$
𝑚)

Λ/0&$ 	

Λ!"# ≳ 𝑂 10~100  TeV

Powerful probe for new physics!

𝛿!"~𝑂(1)
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Experimental prospect
EDMs have a bright prospect for experimental progress.     

arXiv:2003.00717 arXiv:2203.08103 

Storage ring EDM 

Abel et al ‘20
Roussy et al ‘22
Graner et al ‘16

2003.00717
EDMs have a bright prospect for experimental progress.     

arXiv:2003.00717 arXiv:2203.08103 

Storage ring EDM 

Abel et al ‘20
Roussy et al ‘22
Graner et al ‘16

2203.08103

In a decade, the experimental sensitivity on EDMs of electrons, nucleons, 
atoms, and molecules is going to be improved by several orders of magnitude.
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CP violating UV sources

Talk preparation note

August 2, 2024

LCPV(mW < µ < ΛBSM) = LKM +
g2s

32π2
θ̄Ga

µνG̃
aµν + Ldim 6 + · · · (1)

du
e

∼
Qu

32π2
mk

f2
a

min
[
m2

a,m
2
k(4 ln

ma
mk

− 3)
]

m2
a

Im(cikψ c
kj∗
ψ ) (2)

∂µa

fa
ψ†
i σ̄

µcijψψj (3)

ψi

(
ei

a
fa

cψMψe
i a
fa

cψc
)ij

ψc
j (4)

ψ ↔ ψ ei
a
fa

cψ (5)

∆θQCD ≃
mt(m2

t +m2
a)

16π2f2
amu

Im(c13Q c∗13uR
) ln

(
f2
a

max(m2
t ,m

2
a)

)
(6)

1

Λ
|H|2NhidN

c
hid + θGhidG̃hid (7)

1

Λ
Λ3
hid|H|2 cos(θ + δ) (8)

U(1)PQ : θ(x) → θ(x) + α (9)

1

VBSM(θ̄) ∼ −m2
πf

2
π

(
ΛQCD

ΛBSM

)N

cos(θ̄ + δCP,BSM) (90)

θGG̃+ (mqqLq
c
R + h.c.) −→

(
|mq|eiθ̄qLqcR + h.c.

)
(91)

qL → qLe
−iθ (92)

θ̄ = θ + arg(mq) (93)

(
|mq|eiθ̄qLqcR + h.c.

)
+ VQG(θ̄) +

(
id̃qqLσ

µνGµνq
c
R + h.c.

)
+ dWGGG̃ (94)

V (θ̄) ≈ −
Λ3
χ

(4π)2
|mq| cos θ̄ + VQG(θ̄)±

Λ5
χ

(4π)3
d̃q sin θ̄ ±

Λ5
χ

(4π)3
|mq|dW sin θ̄ (95)

∂θ̄V = 0 (96)

⟨θ̄⟩ ≈ (4π)2
∂θ̄VQG

|mq|Λ3
χ
±

Λ2
χ

4π

d̃q
|mq|

±
Λ2
χ

4π
dW (97)

Ldim 6 =|H|2GG̃+ fabcGaGbG̃c +HQ̄Lσ
µνGµνdR

+HQ̄Lσ
µνBµνdR + L̄LeRd̄RQL + · · ·

(98)

fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµν iγ5Fµνe+ q̄qq̄q + ēeq̄q + · · ·
(99)

g2s
32π2

a

fa
GG̃+ δVUV(a) +

∑

i

λiOi (100)
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EWSB and integrating out 
heavy SM fields

Quark Chromo-EDMs (CEDMs)

Quark EDMs 4-Fermi operators

Around the QCD scale ~ 1 GeV 

Gluon Chromo-EDM
(Weinberg operator)

Electron EDM

V (a) = VQCD(a) + δVUV(a) + δVBSM(a) (101)

δVUV ∼ m3/2M
3
Ple

−Sins cos(a/fa + δUV) (102)

θ̄ =
⟨a⟩
fa

(103)

∂aV (a) = 0 (104)

dN = dN (θ̄,λi) (105)

dN = dN (θ̄(λi),λi) (106)

θ̄ =
⟨a⟩
fa

∼
fa∂aδVUV(a)

f2
πm2

π
+

∑
i λi

∫
d4x

〈
g2s

32π2GG̃(x)Oi(0)
〉

f2
πm2

π

(107)

fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q
(108)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(109)

g2s
32π2

θ̄QCDGG̃+q̄σµνiγ5Gµνq + q̄σµνiγ5Fµνq

+ fabcGaGbG̃c + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(110)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ ēeq̄q + q̄qq̄q · · ·
(111)

10
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Potentially dominant CPV operators around the QCD scale ~ 1 GeV

SM BSM

fabcGaGbG̃c + |H|2GG̃+HQ̄Lσ
µνGµνdR

+HQ̄Lσ
µνBµνdR + L̄LeRd̄RQL + · · ·

(22)

fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµν iγ5Fµνe+ q̄qq̄q + ēeq̄q + · · ·
(23)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q + · · ·

(24)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q + · · ·

(25)

N → Ne−iγ5α/2 (26)

|mN |N̄eiγ5αN +
1

2
µNgsN̄σ

µνNFµν (27)

|mN |N̄N +
1

2
µNgsN̄σ

µνNFµν −
1

2
αµNgsN̄σ

µνiγ5NFµν (28)

(mq)ij q̄iqj +
g2s

32π2
θGG̃ (29)

θ̄ = θ +Argdet(mq) (30)

1

3!
dwGGG̃ (31)

d̃q q̄σ ·Giγ5q (32)

3
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BSM example :
MSSM with a universal SUSY breaking scale

J
H
E
P
0
4
(
2
0
2
4
)
0
0
7

g̃

fLfL fR

f̃

g̃, χ̃±, χ̃0

H

g

Figure 8. The diagrams illustrating the dimension-six CPV operators generated in supersymmetric
extensions of the SM. The blob in the first diagram denotes the gluino CEDM originating from the
CP phase of gluino mass.

interaction with the gluon. In fact, the split (or high scale) SUSY is an excellent example
in which the SUSY CPV is dominantly mediated by gauge and Higgs interactions with
the SM sector [46, 83]. In particular, the gluon CEDM shown on the left of figure 8 can
be the dominant CPV operator if the gluino has a mass comparable to that of charginos
and neutralinos [46].

On the other hand, the natural SUSY is a scenario where only the superpartners that
are relevant for electroweak symmetry breaking, such as stops and higgsinos, are light. Such
spectrum typically avoids problems associated with fine-tuning, while at the same time it
introduces new sources of CPV from the Higgs sector. For example, a new tree-level interaction
between the Higgs and a singlet field (introduced, e.g., to solve the so-called µ problem) can
generate a large EDM for the electron or quarks through two-loop Barr-Zee type diagrams [76].

The extended Higgs sector of the MSSM— which is required to cancel the chiral anomalies
— is another source of SUSY contributions to EDMs. It consists of two Higgs doublets, which
result in five physical Higgs bosons: two CP-even scalars h, H, one CP-odd pseudoscalar
A, and two charged scalars H±. The exchange of these Higgs bosons at one-loop level can
induce EDMs for quarks and leptons through their Yukawa couplings and their CKM matrix
elements. In fact, this type of Higgs sector is a special case of the more general class of
models known as type II Two-Higgs-Doublet Models (2HDMs) that predict such extended
scalar sector; we discuss them in the next section. The EDMs from the extended Higgs
sector of the MSSM depend on the masses and couplings of the Higgs bosons, as well as
the CPV phase in the Higgs potential.

Another possibility for SUSY contributions to EDMs is the R-parity violating (RPV)
MSSM, which allows for lepton and baryon number violating interactions among the super-
partners. The RPV MSSM does not introduce new one-loop diagrams contributing to the
EDMs [84], and the leading contribution takes place at the two-loop level, mainly through
the Barr-Zee type diagrams, which involve a loop of charged particles and a loop of neutral
particles. However, the discussion of the RPV MSSM is beyond the scope of this work, while
an extensive discussion can be found in [85].

5.3 2HDMs

2HDMs are a class of models that can mediate CP violation through heavy beyond the
Standard Model (BSM) Higgs bosons, 3 neutral and 2 charged ones, with a Z2 symmetry

– 23 –

V (a) = VQCD(a) + δVUV(a) + δVBSM(a) (101)

δVUV ∼ m3/2M
3
Ple

−Sins cos(a/fa + δUV) (102)

θ̄ =
⟨a⟩
fa

(103)

∂aV (a) = 0 (104)

dN = dN (θ̄,λi) (105)

dN = dN (θ̄(λi),λi) (106)

θ̄ =
⟨a⟩
fa

∼
fa∂aδVUV(a)

f2
πm2

π
+

∑
i λi

∫
d4x

〈
g2s

32π2GG̃(x)Oi(0)
〉

f2
πm2

π

(107)

fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q
(108)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(109)

g2s
32π2

θ̄QCDGG̃+q̄σµνiγ5Gµνq + q̄σµνiγ5Fµνq

+ fabcGaGbG̃c + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(110)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ ēeq̄q + q̄qq̄q · · ·
(111)

10

Quark CEDMs domination
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BSM example :
Split supersymmetry

γ

h

f f

χ
+

i

Z χ
+

j

χ
+

i

f

γ

f

χ
+

i

W
+

W
+

χ
+

i

χ
0

j

γ

γ h

f f

χ
+

i

Figure 1: Two loop contributions to the light SM fermion EDMs. The third diagram is for a
down-type fermion f .

gives an uncertainty on ηQCD of about 2%, while we expect an uncertainty of about 5% from
next-to-leading order effects. Notice that the value of ηQCD obtained here is different than what
computed in ref. [22] and generally used in the literature. Indeed, ref. [22] incorrectly uses the
opposite sign for γ. Our result gives a QCD renormalization coefficient about a factor of 2 smaller
than usually considered, and it agrees with the recent findings of ref. [23].

To express the neutron EDM in terms of the quark EDMs, we use the results of QCD sum-rule
techniques [24, 25]:

dn = (1± 0.5)

[
f2
πm

2
π

(mu +md)(225MeV)3

](
4

3
dd −

1

3
du

)
, (11)

where fπ ≈ 92MeV and we have neglected the contribution of the quark chromoelectric dipoles,
which does not arise at the two-loop level in the heavy-squark mass limit. Note that dn depends
on the light quark masses only through the ratio mu/md, for which we take the value mu/md =
0.553 ± 0.043.

3 Expansions in the heavy-chargino limit

We now discuss the result in the limit in which the R-symmetry breaking scale, determining
gaugino and Higgsino masses, is larger than MZ and mH . A leading-order perturbative expansion
of eq. (6) in powers of |M1,2µ|/M2

Z and |M1,2µ|/m2
H (keeping all orders in |M1,2/µ| and inMZ/mH)

5

𝑍,
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+
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+
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+
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+
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+
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+
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+
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γ

γ h
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χ
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i

Figure 1: Two loop contributions to the light SM fermion EDMs. The third diagram is for a
down-type fermion f .

gives an uncertainty on ηQCD of about 2%, while we expect an uncertainty of about 5% from
next-to-leading order effects. Notice that the value of ηQCD obtained here is different than what
computed in ref. [22] and generally used in the literature. Indeed, ref. [22] incorrectly uses the
opposite sign for γ. Our result gives a QCD renormalization coefficient about a factor of 2 smaller
than usually considered, and it agrees with the recent findings of ref. [23].

To express the neutron EDM in terms of the quark EDMs, we use the results of QCD sum-rule
techniques [24, 25]:

dn = (1± 0.5)

[
f2
πm

2
π

(mu +md)(225MeV)3

](
4

3
dd −

1

3
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)
, (11)

where fπ ≈ 92MeV and we have neglected the contribution of the quark chromoelectric dipoles,
which does not arise at the two-loop level in the heavy-squark mass limit. Note that dn depends
on the light quark masses only through the ratio mu/md, for which we take the value mu/md =
0.553 ± 0.043.

3 Expansions in the heavy-chargino limit

We now discuss the result in the limit in which the R-symmetry breaking scale, determining
gaugino and Higgsino masses, is larger than MZ and mH . A leading-order perturbative expansion
of eq. (6) in powers of |M1,2µ|/M2

Z and |M1,2µ|/m2
H (keeping all orders in |M1,2/µ| and inMZ/mH)

5

Quark and Electron EDMs

Giudice and Romanino ‘05

J
H
E
P
0
4
(
2
0
2
4
)
0
0
7

g̃

fLfL fR

f̃

g̃, χ̃±, χ̃0

H

g

Figure 8. The diagrams illustrating the dimension-six CPV operators generated in supersymmetric
extensions of the SM. The blob in the first diagram denotes the gluino CEDM originating from the
CP phase of gluino mass.

interaction with the gluon. In fact, the split (or high scale) SUSY is an excellent example
in which the SUSY CPV is dominantly mediated by gauge and Higgs interactions with
the SM sector [46, 83]. In particular, the gluon CEDM shown on the left of figure 8 can
be the dominant CPV operator if the gluino has a mass comparable to that of charginos
and neutralinos [46].

On the other hand, the natural SUSY is a scenario where only the superpartners that
are relevant for electroweak symmetry breaking, such as stops and higgsinos, are light. Such
spectrum typically avoids problems associated with fine-tuning, while at the same time it
introduces new sources of CPV from the Higgs sector. For example, a new tree-level interaction
between the Higgs and a singlet field (introduced, e.g., to solve the so-called µ problem) can
generate a large EDM for the electron or quarks through two-loop Barr-Zee type diagrams [76].

The extended Higgs sector of the MSSM— which is required to cancel the chiral anomalies
— is another source of SUSY contributions to EDMs. It consists of two Higgs doublets, which
result in five physical Higgs bosons: two CP-even scalars h, H, one CP-odd pseudoscalar
A, and two charged scalars H±. The exchange of these Higgs bosons at one-loop level can
induce EDMs for quarks and leptons through their Yukawa couplings and their CKM matrix
elements. In fact, this type of Higgs sector is a special case of the more general class of
models known as type II Two-Higgs-Doublet Models (2HDMs) that predict such extended
scalar sector; we discuss them in the next section. The EDMs from the extended Higgs
sector of the MSSM depend on the masses and couplings of the Higgs bosons, as well as
the CPV phase in the Higgs potential.

Another possibility for SUSY contributions to EDMs is the R-parity violating (RPV)
MSSM, which allows for lepton and baryon number violating interactions among the super-
partners. The RPV MSSM does not introduce new one-loop diagrams contributing to the
EDMs [84], and the leading contribution takes place at the two-loop level, mainly through
the Barr-Zee type diagrams, which involve a loop of charged particles and a loop of neutral
particles. However, the discussion of the RPV MSSM is beyond the scope of this work, while
an extensive discussion can be found in [85].

5.3 2HDMs

2HDMs are a class of models that can mediate CP violation through heavy beyond the
Standard Model (BSM) Higgs bosons, 3 neutral and 2 charged ones, with a Z2 symmetry

– 23 –

Gluon CEDM

V (a) = VQCD(a) + δVUV(a) + δVBSM(a) (101)

δVUV ∼ m3/2M
3
Ple

−Sins cos(a/fa + δUV) (102)

θ̄ =
⟨a⟩
fa

(103)

∂aV (a) = 0 (104)

dN = dN (θ̄,λi) (105)

dN = dN (θ̄(λi),λi) (106)

θ̄ =
⟨a⟩
fa

∼
fa∂aδVUV(a)

f2
πm2

π
+

∑
i λi

∫
d4x

〈
g2s

32π2GG̃(x)Oi(0)
〉

f2
πm2

π

(107)

fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q
(108)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(109)

g2s
32π2

θ̄QCDGG̃+q̄σµνiγ5Gµνq + q̄σµνiγ5Fµνq

+ fabcGaGbG̃c + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(110)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ ēeq̄q + q̄qq̄q · · ·
(111)

10

V (a) = VQCD(a) + δVUV(a) + δVBSM(a) (101)

δVUV ∼ m3/2M
3
Ple

−Sins cos(a/fa + δUV) (102)

θ̄ =
⟨a⟩
fa

(103)

∂aV (a) = 0 (104)

dN = dN (θ̄,λi) (105)

dN = dN (θ̄(λi),λi) (106)

θ̄ =
⟨a⟩
fa

∼
fa∂aδVUV(a)

f2
πm2

π
+

∑
i λi

∫
d4x

〈
g2s

32π2GG̃(x)Oi(0)
〉

f2
πm2

π

(107)

fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q
(108)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq

+ q̄σµνiγ5Fµνq + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(109)

g2s
32π2

θ̄QCDGG̃+q̄σµνiγ5Gµνq + q̄σµνiγ5Fµνq

+ fabcGaGbG̃c + ēσµνiγ5Fµνe+ q̄qq̄q + ēeq̄q

(110)

g2s
32π2

θ̄GG̃ + fabcGaGbG̃c + q̄σµνiγ5Gµνq
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BSM example :
Split supersymmetry with large tan	𝛽

is the neutral Higgs mixing angle, and dropped all
tan!-suppressed terms. CP-odd contact interactions can
also be induced via A–H mixing, Fig. 2(b), which appears
due to CP-violating Higgs couplings to the third genera-
tion squarks [9] (Fig. 1(c)):

LAH ’ hAHi tan2!
2m4

A

X

i;j!e;d;s;b

YSM
i YSM

j
!  i i !  ji"5 j

j1" Ji tan!jj1" Jj tan!j
:

(4)

Here we have used m2
H ’ m2

A # hAHi. Such effects were
studied previously in the context of 2HDMs with sponta-
neous breaking of CP by Barr [10].

Inspection of Eq. (3) reveals that the CP-odd coupling
grows as tan3! because sin#i ’ ImJi tan!=j1" Ji tan!j,
until the radiative corrections become comparable to the
tree-level values. The cubic growth is different from a
tan2!-behavior in 2HDMs with spontaneous CP violation
[10]. Thus, generally Eq. (4) represents a subleading
effect, as hAHi contains a loop smallness not compensated
by large tan!. We note that the QCD renormalization
group flow for the electron-quark interactions from mA to
1 GeV is trivial at one-loop and one can simply take YSM

i
normalized at 1 GeV. Using Eq. (3), we calculate the
EDMs of paramagnetic atoms and estimate the EDMs of
diamagnetic atoms and neutrons. The semileptonic oper-
ators in (3) induce two types of T-odd nucleon-electron
interaction

LCP ! CSNNei"5e" CPNi"5Nee; (5)

with possible isospin dependence. CS and CP are severely
constrained by the recently improved experimental bounds
on the EDM of the thallium and mercury atoms [2,3]. With
the use of the standard technique for the QCD matrix
elements [11] of a heavy quark over a nucleon state, the
isospin-singlet coupling CS can be expressed as

CS ’
5:5$ 10%10 tan2!
m2
Aj1" Je tan!j

!&1% 0:25$'&sin#b % sin#e'
j1" Jb tan!j

" 3:3$&sin#s % sin#e'
j1" Js tan!j

" 0:5&sin#d % sin#e'
j1" Jd tan!j

"

:

(6)

Here we have used &mu "md'hNjuu" ddjNi=2 !

45 MeV and &mu %md'hNjuu% ddjNi=90 MeV ( 1.
The coefficient $ ) hNjmsssjNi=220 MeV parametrizes
the uncertainty in the value of hNjmsssjNi matrix element.
Its ‘‘best’’ value $ ! 1 is inferred from the leading order
flavor SU&3' analysis of the baryon octet mass splittings. It
is important to note that a significant source of uncer-
tainty—the poorly known masses of the light quarks—
does not affect Eq. (6). Using (6), and the results of the
atomic calculation that relates dTl and CS [12],

dTl ’ %8:5$ 10%17e cm$ CS&100 GeV'2; (7)

one can express the thallium EDM in terms of the SUSY
parameters. Comparison of (7) with the experimental data
provides the bound CS < 1:1$ 10%8&100 GeV'%2:

The dimensionless loop functions Ji’s depend on the
pattern of the soft masses. To get an idea of the size of the
induced EDMs, let us first consider a toy model with
msfermion ! mgaugino ! j%j ! jAij ! M # MZ. The domi-
nant contribution comes from the squark-gluino and stop-
Higgsino exchange:

Je ! 0; Jd ! Js !
&s
3'

expfi(% " i(3g; (8)

Jb !
&s
3'

expfi(% " i(3g"
&YSM
t '2

32'2 expfi(% " i(Atg;

where (%;(3;(At are the phases of the % parameter, the
gluino mass, and the At parameter, respectively. In the case
of general soft terms, the gluino contribution to Ji should
be multiplied by j%M3jI&m2

i1; m
2
i2; jM3j2' and the Higgsino

contribution by j%AtjI&m2
t1; m

2
t2; j%j2' [6], where mi1;2 are

the squark mass eigenvalues,M3 is the gluino mass, and the
loop function is defined by

I&a; b; c' ! 2
ab ln&a=b' " bc ln&b=c' " ac ln&c=a'

&a% b'&b% c'&a% c' ;

(9)

such that I ! 1=M2 for a ! b ! c ! M2. In the same
limit, the CP-odd Higgs mixing is given by

hAHi ! v2

64'2 *&YSM
t '4 sin&2(% " 2(At'

" &YSM
b '4 tan4! sin&2(% " 2(Ab'+:

(10)

Obviously, both Ji’s and hAHi are independent of the
superpartner mass scale M. An expression for hAHi in a
more general case can be found in [9]. As we will see, the
effect of the A–H mixing does not impose significant
constraints for mA , 150 GeV, so henceforth we will
mainly concentrate on the effect of the vertex corrections.

The Higgs-quark vertex corrections lead to the following
thallium EDM normalized to the current 90% C.L. experi-
mental bound *dTl+exp ) 9:4$ 10%25e cm [2]:

dTl
*dTl+exp

’ tan3!
350$m2

100

*sin(% " 0:04 sin&(% "(At'+;

(11)

CP

e

D

A, H CP

e

D

A, H

H, A

(a) (b)

FIG. 2. Higgs-mediated four-fermion interactions with CP
violation in the Higgs-fermion vertex (a) and on the Higgs
line (b).
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Semi-leptonic 4-Fermi operator

Lebedev and Pospelov ‘02
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BSM example :
2 Higgs-doublet models

Quark CEDMs Gluon CEDM

S. Weinberg ’89,   Gunion, Wyler ’90 
Chang, Keung, Yuan ’90,  Jung, Pich ‘14
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H

Figure 9. The diagrams depict the dimension-six CPV operators originating from 2HDMs. Here,
φ0i = h,H0, A0 denotes the neutral Higgs bosons. The left panel illustrates the generation of the
Weinberg operator, while the right one presents the generation of the quark CEDM.

imposed to suppress the flavor-changing neutral currents, see [86, 87] for an extended discussion
of its EDM phenomenology. CPV phases can enter through both Yukawa interactions,
parameterized in general by arbitrary complex matrices,9 and by the CPV terms in the
potential of neutral scalars.

Compared to the Higgs sector of the MSSM, the 2HDM can potentially exhibit more
significant CPV effects, due to the possible presence of physical CP-violating phases in the
Higgs sector. These CPV phases can exist even if all the input parameters are real and, in
contrast to the MSSM, cannot be rotated away by field redefinitions, owing to the absence of
R-symmetry. Thus, even if the input parameters are chosen to be real, spontaneous symmetry
breaking in the 2HDM can give rise to CPV, which does not hold for MSSM at the tree
level. On the other hand, in the MSSM, CP violation can arise from the complex phases of
the soft SUSY-breaking parameters or from loop-level effects, as discussed in the previous
section, even if the Higgs sector parameters are chosen to be real.

2HDMs are characterized by a rich EDM phenomenology, which depends largely on
how the Higgs doublets couple to the SM fermions, and therefore fall into several types —
see, e.g., [88] for an overview. In these models, the quark CEDMs are the dominant CPV
operators, and they can be generated by the top quark loops, as illustrated in figure 9,
which also involves the exchange of neutral and charged Higgs bosons. Another significant
source of CPV emerges from the CEDM of the gluon [86]. In contrast, the CPV four-fermion
operators, which arise from the exchange of two heavy Higgs bosons, are typically negligible.
This takes place because they are suppressed by the product of two small Yukawa couplings
and the absence of the potentially large factor tan3 β; the parameter tan β is the ratio of
the vacuum expectation values of the two Higgs doublets, which determines the strength
of the Yukawa couplings. Therefore, the EDMs in 2HDMs with a Z2 symmetry are mainly
sensitive to the quark and gluon CEDMs.

6 Conclusions

Since the SM predictions of the nuclear and atomic EDMs from the Kobayashi-Maskawa
phase are well below the current and near-future experimental bounds, the observation of

9The special case of phases described by a scalar matrix corresponds to the so-called Aligned 2HDM.
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Figure 9. The diagrams depict the dimension-six CPV operators originating from 2HDMs. Here,
φ0i = h,H0, A0 denotes the neutral Higgs bosons. The left panel illustrates the generation of the
Weinberg operator, while the right one presents the generation of the quark CEDM.
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potential of neutral scalars.
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Higgs sector. These CPV phases can exist even if all the input parameters are real and, in
contrast to the MSSM, cannot be rotated away by field redefinitions, owing to the absence of
R-symmetry. Thus, even if the input parameters are chosen to be real, spontaneous symmetry
breaking in the 2HDM can give rise to CPV, which does not hold for MSSM at the tree
level. On the other hand, in the MSSM, CP violation can arise from the complex phases of
the soft SUSY-breaking parameters or from loop-level effects, as discussed in the previous
section, even if the Higgs sector parameters are chosen to be real.

2HDMs are characterized by a rich EDM phenomenology, which depends largely on
how the Higgs doublets couple to the SM fermions, and therefore fall into several types —
see, e.g., [88] for an overview. In these models, the quark CEDMs are the dominant CPV
operators, and they can be generated by the top quark loops, as illustrated in figure 9,
which also involves the exchange of neutral and charged Higgs bosons. Another significant
source of CPV emerges from the CEDM of the gluon [86]. In contrast, the CPV four-fermion
operators, which arise from the exchange of two heavy Higgs bosons, are typically negligible.
This takes place because they are suppressed by the product of two small Yukawa couplings
and the absence of the potentially large factor tan3 β; the parameter tan β is the ratio of
the vacuum expectation values of the two Higgs doublets, which determines the strength
of the Yukawa couplings. Therefore, the EDMs in 2HDMs with a Z2 symmetry are mainly
sensitive to the quark and gluon CEDMs.

6 Conclusions

Since the SM predictions of the nuclear and atomic EDMs from the Kobayashi-Maskawa
phase are well below the current and near-future experimental bounds, the observation of

9The special case of phases described by a scalar matrix corresponds to the so-called Aligned 2HDM.
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BSM example:  QCD axion
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K. Choi’s talk

PQ breaking from 
quantum gravity

PQ breaking from 
hadronic BSM CP violation

Talk preparation note
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(102)

g2s
32π2

a

fa
GG̃+ δVUV(a) +

∑

i

λiOi (103)

V (a) = VQCD(a) + δVUV(a) + δVBSM(a) (104)

δVUV ∼ m3/2M
3
Ple

−Sins cos(a/fa + δUV) (105)

θ̄ =
⟨a⟩
fa

(106)

∂aV (a) = 0 (107)

dN = dN (θ̄,λi) (108)

dN = dN (θ̄(λi),λi) (109)

θ̄BSM ∼

∑
i

∫
d4x

〈
g2s

32π2GG̃(x)Oi(0)
〉

f2
πm2

π

(110)

Oi =
{
d̃GGGG̃, d̃q q̄σ

µνiγ5Gµνq, cq q̄qq̄iγ5q, · · ·
}

(111)

10
Hadronic BSM CP violation induces a non-zero �̅� as well as directly 
contributing to nuclear and atomic EDMs, while the quantum gravity 
effects appear only through �̅�.
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Potentially dominant CPV operators around the QCD scale ~ 1 GeV

SM or QCD axion BSM

Key question: If non-vanishing EDMs are observed, can we 
experimentally determine the source of the CP violation among 
those different possible UV sources ?
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cf) J de Vries et al 1109.3604, 1809.10143, 2107.04046

We are extending the previous studies, including the PQ quality issue and 
comprehensive coverage of the leading operators. 
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Below the QCD scale the above operators give rise to CP-violating operators at nuclear

level. At leading order they are1
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EDMs of light nuclei and diamagnetic atoms

Nuclear EDM/Schiff moment from nucleon level CP violation

Two leading contributions:

1) Nucleon’s intrinsic EDM:

2) Polarization of the nucleus:

+

-

Contribution from the nucleon EDM 

Contribution from the P, CP-odd nuclear force 

⇒ Spin expectation value (CP-even)

⇒ EDM generated by the CP-even ⇄ CP-odd mixing
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May be enhanced by many-body effect!
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Polarization of nucleus
à  Atomic electric dipole moment
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Aids from CP-odd nuclear force
EDM/Schiff moment require CP mixing to have finite expectation value

Nuclear CP-odd moments from CP-odd nuclear force

CP-odd nuclear force mixes opposite parity states

s-wave p-wave

+

-

+
-

polarized system

+ =

Parity mixing ⇒ Polarized ground state!

H = Hrealistic

HrealisticHPT

HPT
P, CP-odd 

nuclear force

P, CP-even 
realistic nuclear force 

(known)

Total hamiltonian:

CP mixing is generated by CP-odd nuclear force, mainly via pion-exchange

⇒ θ-term, cEDM, 4-quark interactions are also constrained by atomic EDMs

N

NN

N
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Nuclear EDM/Schiff moment from nucleon level CP violation

Two leading contributions:

1) Nucleon’s intrinsic EDM:

2) Polarization of the nucleus:
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⇒ EDM generated by the CP-even ⇄ CP-odd mixing
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Polarization of nucleus
à  Atomic electric dipole moment

and electron-gluon interactions. These operators are
induced in the leptoquark model, cf. Eqs. (10) and (12).
They further induce CP-odd electron-nucleon interactions

that, in turn, induce atomic and molecular EDMs. The
CP-violating electron-nucleon interactions take the
form [43]

L ¼ −
GFffiffiffi
2

p
"
ēiγ5eN̄ðCð0Þ

S þ τ3C
ð1Þ
S ÞN þ ēe

∂μ

mN
½N̄ðCð0Þ

P þ τ3C
ð1Þ
P ÞSμN&

− 4ēσμνeN̄ðCð0Þ
T þ τ3C

ð1Þ
T ÞvμSνN

#
þ…; ð39Þ

where N ¼ ðpnÞT is the nonrelativistic nucleon doublet with mass mN , velocity vμ, and the spin Sμ [vμ ¼ ð1; 0Þ and
Sμ ¼ ð0; σ=2Þ in the nucleon rest frame]. The matching coefficients are given by

Cð0Þ
S ¼ v2

$
σπN

mu þmd
ImCð1Þeeuu

lequ þ 16π
9

ðmN − σπN − σsÞCeG

%
;

Cð1Þ
S ¼ v2

1

2

δmN

md −mu
ImCð1Þeeuu

lequ ;

Cð0Þ
P ¼ −8πv2ðΔu þ ΔdÞmNCeG̃; Cð1Þ

P ¼ v2
gAmN

mu þmd
ImCð1Þeeuu

lequ − 8πv2gAmN
md −mu

mu þmd
CeG̃;

Cð0Þ
T ¼ v2ðgdT þ guTÞImCð3Þeeuu

lequ ; Cð1Þ
T ¼ v2ðgdT − guTÞImCð3Þeeuu

lequ : ð40Þ

in terms of the hadronic matrix elements [62–65]

σπN ¼ ð59.1' 3.5Þ MeV; σs ¼ ð41.1þ11.3
−10.0Þ MeV; δmN ¼ ð2.32' 0.17Þ MeV;

gA ¼ 1.27' 0.002; Δu ¼ 0.842' 0.012; Δd ¼ −0.427' 0.013: ð41Þ

Hadronic operators.—More complicated are the purely
hadronic operators such as the quark (chromo-)EDMs and
four-quark operators. We begin with the analysis of quark
EDMs, which are induced in the LQ scenario as well as the
MSSM. Due to the explicit appearance of the electromag-
netic field strength, quark EDMs mainly induce hadronic
operators that contain explicit photons as well (operators
without photons are suppressed by αem=π). The most
important operators are the nucleon EDMs, related to the
quark EDMs by

dnðdqÞ ¼ guTdu þ gdTdd;

dpðdqÞ ¼ guTdd þ gdTdu; ð42Þ

where guT ¼ −0.213' 0.011 and gdT ¼ 0.820' 0.029.
These so-called tensor charges are obtained from lattice-
QCD calculations [66] and have very small theoretical
uncertainties.
The quark chromo-EDMs also contribute to nucleon

EDMs, but there are no lattice-QCD calculations available
at present. The neutron EDM was evaluated using QCD
sum rules [67,68] giving

dnðd̃qÞ ¼ g̃nð4Qdd̃d −Qud̃uÞ; ð43Þ

where g̃n ¼ ð1' 0.5Þ0.55e=Qu. We express the proton
EDM through a quark model relation

dpðd̃qÞ ¼ c̃pg̃nð−4Qdd̃u þQud̃dÞ; ð44Þ

so that dp and dn depend on the same QCD matrix element
g̃n. We use c̃p ¼ 1' 0.2 to account for possible isospin
breaking. These relations are valid only under a Peccei-
Quinn mechanism, that is the expressions take into account
the contribution from the induced θ̄ term.
In addition to nucleon EDMs, the quark chromo-EDMs

also induce CP-violating pion-nucleon interactions. The
most important operators are given by

L ¼ ḡ0N̄τ · πN þ ḡ1N̄π3N ð45Þ

in terms of the pion triplet π⃗. These couplings were
evaluated with QCD sum rules as well but come with
rather large uncertainties [69]. Chiral perturbation theory
can be used to obtain some further insight in these matrix

JORDY DE VRIES et al. PHYS. REV. D 104, 055039 (2021)
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Isospin-singlet Isospin-breaking

CP-odd nuclear forces are dominated 
by CPV pion-nucleon couplings.

P and CP-odd nuclear forces

The permanent EDM of a diamagnetic system is mainly from 
nucleon EDMs and permanent polarization of the nucleus due to 
P and CP-odd nuclear forces.

In diamagnetic systems, all electrons are paired.
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In principle, the EDM measurements of those polar molecules or paramagnetic atoms

may be able to determine de, C
(0)
S , and C(1)

S . However, the ratio r = (Z�N)/(Z+N) ' 0.2

in CS = C(0)
S + rC(1)

S is almost the same regardless of atoms or molecules with variations

up to ±0.03. Thus it turns out that we cannot experimentally determine C(0)
S and C(1)

S

separately given the theoretical uncertainties in the coe�cients in Eqs. (3.2-3.5) but only

the combination CS which is almost independent of the systems. Therefore only two

paramagnetic molecular EDMs are enough to determine de and CS .

3.2 Light nuclei and diamagnetic atoms

Light nuclei

dp, dn (3.9)

dD = 0.94(1)(dn + dp) + 0.18(2)ḡ1 e fm (3.10)

dHe = 0.9dn � 0.03(1)dp +
h
0.11(1)ḡ0 + 0.14(2)ḡ1� (0.04(2)C1 � 0.09(2)C2) fm

�3
i
e fm

(3.11)

Diamagnetic atoms

dHg = �2.1(5)⇥ 10�4
⇥
1.9(1)dn + 0.20(6)dp +

�
0.13+0.5

�0.07 ḡ0 + 0.25+0.89
�0.63 ḡ1

�
e fm

⇤

�0.012(12)de +
⇥
�0.028(6)CS + 6⇥ 10�3CP + 1.7CT

⇤
⇥ 10�7e fm (3.12)

dRa = 7.7⇥ 10�4
⇥
(2.5± 7.5)ḡ0 � (65± 40)ḡ1�(1.1(3.3)C1 � 3.2(2.1)C2) fm

�3
⇤
e fm,

�0.054(2)de +
⇥
0.029CS � 6.4⇥ 10�3CP � 1.8CT

⇤
⇥ 10�6e fm (3.13)

dXe = 1.3⇥ 10�5dn � [1.6ḡ0 + 1.7ḡ1]⇥ 10�5 e fm

�1.2(4)⇥ 10�3de +
⇥
�0.006CS + 1.6⇥ 10�3CP + 0.57CT

⇤
⇥ 10�7e fm (3.14)

4 Disentangling the UV sources with EDM measurements

4.1 de and CS

Let us choose HfF+ and ThO to determine de and CS , since EDMs of these molecules are

most accurately measured among paramagnetic systems up to now. Eq. (3.2) and Eq.

(3.3) can be written as

 
!HfF+

!ThO

!
[mrad/s]�1 = MHT

 
de [e cm]�1

CS

!
(4.1)

with

MHT =

 
3.49(14) · 1028 3.20(13) · 108

1.206(49) · 1029 1.816(73) · 109

!
. (4.2)

The determinant of the matrix MHT comes out to be

Det(MHT) = 2.5(4) · 1037. (4.3)
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Light nuclei

Diamagnetic atoms with heavy nuclei

Bsaisou, Meissner, Nogga, Wirzba ‘14

e.g.) Engel, Ramsey-Musolf, Kolck ’13
Fleig, Jung ‘18
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EDMs of paramagnetic molecules and atoms

The permanent EDM of a paramagnetic system is mainly from 
electron EDM and permanent polarization of the system due to 
P and CP-odd electron-nucleon interactions.

In paramagnetic systems, there is at least one 
unpaired electron. 

unpolarized polarized

P and CP-odd 
electron-nucleon 

interactions
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Polar molecules

Paramagnetic atoms
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which is from
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where µp,n are the nucleon magnetic dipole moments, µN is the nuclear magneton, pF ⇡ 250

MeV is the typical Fermi momentum of a nucleus, and

�p = �
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⇡f⇡m2
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ḡ1 + ḡ0 +

ḡ⌘NN
0
p
3

m2
⇡
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⌘
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In the case that the strong CP problem is solved by the PQ mechanism, one has to

replace ✓̄ by the dynamically determined quantity ✓̄PQ.

✓̄PQ ⌘
hai

fa
= ✓̄UV + ✓̄BSM, (2.34)

✓̄BSM =
m2

0

2

X

q=u,d,s

d̃q
mq

+O(4⇡f2
⇡w), (2.35)

3 Electric dipole moments of nuclei, atoms, and molecules

di =
X

j

PijX
IR
j (3.1)

3.1 Paramagnetic molecules and atoms

Polar molecules

!HfF+ = 3.49(14) · 1028 de[mrad/s][e cm]�1 + 3.20(13) · 108CS [mrad/s] (3.2)

!ThO = 1.206(49) · 1029 de[mrad/s][e cm]�1 + 1.816(73) · 109CS [mrad/s] (3.3)

!YbF = 1.96(15) · 1028 de[mrad/s][e cm]�1 + 1.76(20) · 108CS [mrad/s] (3.4)

!BaF = 1.97(75) · 1028 de[mrad/s][e cm]�1 + 1.270(18) · 108CS [mrad/s] (3.5)

Paramagnetic atoms

dTl = �558(28)de +
�
�0.68CS + 1.5 · 10�6CP + 0.5 · 10�3CT

�
· 10�4e fm (3.6)

dCs = 123(4)de +
�
0.78CS + 2.2 · 10�5CP + 0.92 · 10�2CT

�
· 10�5e fm (3.7)

dFr = 799(24)de + 1.05(3)CS · 10�4e fm (3.8)
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Below the QCD scale the above operators give rise to CP-violating operators at nuclear

level. At leading order they are1

Ldipole = �
i
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µ⌫Fµ⌫�5e , (2.5)

L⇡N = ḡ0N̄~⌧ · ~⇡N + ḡ1⇡3N̄N , (2.6)

L4N = C1N̄NDµ(N
†SµN) + C2N̄~⌧N ·Dµ(N

†~⌧SµN) , (2.7)
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(ē�µ⌫e)N̄(C(0)

T + C(1)
T ⌧3)Sµv⌫N

�
GF
p
2
(ēe)
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The atomic and molecular EDMs from the semi-leptonic interactions will be propor-

tional to the average values of those couplings over nucleons in a nucleus:

CS ⌘ C(0)
S +

Z �N

Z +N
C(1)
S (2.10)

CS ⌘
Z

A
C(p)
S +

N

A
C(n)
S = C(0)

S +
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Z +N
C(1)
S , (2.11)
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P +

h�ni

h�pi+ h�ni
C(n)
P = C(0)

T +
h�pi � h�ni

h�pi+ h�ni
C(1)
T , (2.12)

CP ⌘
h�pi

h�pi+ h�ni
C(p)
T +

h�ni

h�pi+ h�ni
C(n)
T = C(0)

P +
h�pi � h�ni

h�pi+ h�ni
C(1)
P , (2.13)

1In principle, the three-pion operator �⇡⇡
0⇡+⇡� can be considered also. In our previous analysis [? ],

however, we found that its contribution to nuclear and atomic EDMs is generally negligible. Thus in this

analysis we will not include it.

– 2 –

Below the QCD scale the above operators give rise to CP-violating operators at nuclear

level. At leading order they are1

Ldipole = �
i

2
N̄

✓
dp

1 + ⌧3
2

+ dn
1� ⌧3

2

◆
�µ⌫Fµ⌫�5N �

i

2
de ē�
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(ē�µ⌫e)N̄(C(0)

T + C(1)
T ⌧3)Sµv⌫N

�
GF
p
2
(ēe)
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3.1 Paramagnetic molecules and atoms

Polar molecules

!HfF+ = 3.49(14) · 1028 de[mrad/s][e cm]�1 + 3.20(13) · 108CS [mrad/s] (3.2)

!ThO = 1.206(49) · 1029 de[mrad/s][e cm]�1 + 1.816(73) · 109CS [mrad/s] (3.3)

!YbF = 1.96(15) · 1028 de[mrad/s][e cm]�1 + 1.76(20) · 108CS [mrad/s] (3.4)

!BaF = 1.97(75) · 1028 de[mrad/s][e cm]�1 + 1.270(18) · 108CS [mrad/s] (3.5)

Paramagnetic atoms

dTl = �558(28)de +
�
�0.68CS + 1.5 · 10�6CP + 0.5 · 10�3CT

�
· 10�4e fm (3.6)

dCs = 123(4)de +
�
0.78CS + 2.2 · 10�5CP + 0.92 · 10�2CT

�
· 10�5e fm (3.7)

dFr = 799(24)de + 1.05(3)CS · 10�4e fm (3.8)

dTl = �558(28)de +
�
�0.68CS + 1.5 · 10�6CP + 0.5 · 10�3CT
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· 10�4e fm (3.9)
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0.78CS + 2.2 · 10�5CP + 0.92 · 10�2CT

�
· 10�5e fm (3.10)
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In principle, the EDM measurements of those polar molecules or paramagnetic atoms

may be able to determine de, C
(0)
S , and C(1)

S . However, the ratio r = (Z�N)/(Z+N) ' 0.2

in CS = C(0)
S + rC(1)

S is almost the same regardless of atoms or molecules with variations

up to ±0.03. Thus it turns out that we cannot experimentally determine C(0)
S and C(1)

S

separately given the theoretical uncertainties in the coe�cients in Eqs. (3.2-3.5) but only

the combination CS which is almost independent of the systems. Therefore only two

paramagnetic molecular EDMs are enough to determine de and CS .

3.2 Light nuclei and diamagnetic atoms

dA = dA(dp, dn, ḡ0, ḡ1, C1, C2) (3.12)
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Light nuclei

dp, dn (3.16)
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almost system-independent

e.g.) Fleig, Jung ‘18

e.g.) Fleig, Skripnikov ’20
Degenkolb et al ‘24

Shitara et al ‘21
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Measurable quantities at nuclear level

Paramagnetic systems

𝑑7 , 𝐶8

Light nuclei and diamagnetic systems

𝑑9 , 𝑑:, �̅�;, �̅�<, 𝐶<, 𝐶=

(ee𝑁𝑁)

(𝑁𝑁𝑁𝑁)(𝜋𝑁𝑁)
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PQ mechanism

Hadronic CP violation: from QCD to hadron level
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Estimation of the nucleon EDMs

QCD sum 
rules 

(at 𝜇 = 1 GeV)

Pospelov, Ritz ‘99 
Hisano, Lee, Nagata, 
Shimizu ’12
Hisano, Kobayashi, 
Kuramoto, Kuwahara ‘15
Yamanaka, Hiyama ‘20

𝑑, = 0.31×10"'( 𝑒	𝑐𝑚 	�̅� + 𝑒	20	𝑤	MeV

																																	+𝑒(−0.13	 I𝑑1 + 0.16	 I𝑑2 − 0.0066	 I𝑑3)    

−𝑒 0.15	MeV 𝐾$

𝑑4 = −0.46×10"'( 𝑒	𝑐𝑚 	�̅� 	− 𝑒	18	𝑤	MeV

																																	+𝑒(−0.17	 I𝑑1 + 0.12	 I𝑑2 + 0.0098	 I𝑑3)    

+𝑒 1.1	MeV 𝐾$ I𝑑5 ≡ 𝑚5𝐾$

𝑑$(�̅�, 𝑤) ≈ −𝑑%(�̅�, 𝑤) while 𝑑$( 7𝑑&) ≈ −7𝑑%( 7𝑑&) 

𝑑!	~
𝑒𝑚∗

Λ7$
	 �̅� +

𝑒Λ7
4𝜋 𝑤 +

𝑒
4𝜋	

I𝑑5
Naïve dimensional 

analysis (NDA)
(at 𝜇 = 225 MeV)

Λ! = 4𝜋𝑓"
𝑚∗ ≡ 𝑡𝑟𝑀$

%& %&
≃

𝑚'𝑚(
𝑚' +𝑚(

Agrees 
more or 

less
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If there exists the QCD axion (i.e. dynamical �̅�),

𝑑8
9: ≈ −𝑑;

9: regardless of the 3 hadronic CPV sources

�̅� = �̅�89 +
Λ7$

4𝜋𝑤 +
0.8	GeV$

2 Q
5

I𝑑5
𝑚5

𝑑,
:; = 0.31×10"'( 𝑒	𝑐𝑚 	�̅�89 + 𝑒	20	𝑤	MeV + 𝑒(0.15	 I𝑑1 + 0.29	 I𝑑2)    

+𝑒 1.7	MeV 𝐾$

I𝑑5 ≡ 𝑚5𝐾$

𝑑4
:; = −0.46×10"'( 𝑒	𝑐𝑚 	�̅�89 − 𝑒	18	𝑤	MeV − 𝑒(0.58	 I𝑑1 + 0.073	 I𝑑2)    

−𝑒 1.7	MeV 𝐾$

QCD sum rule (Pospelov, Ritz ’00)NDA
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and electron-gluon interactions. These operators are
induced in the leptoquark model, cf. Eqs. (10) and (12).
They further induce CP-odd electron-nucleon interactions

that, in turn, induce atomic and molecular EDMs. The
CP-violating electron-nucleon interactions take the
form [43]

L ¼ −
GFffiffiffi
2

p
"
ēiγ5eN̄ðCð0Þ

S þ τ3C
ð1Þ
S ÞN þ ēe

∂μ

mN
½N̄ðCð0Þ

P þ τ3C
ð1Þ
P ÞSμN&

− 4ēσμνeN̄ðCð0Þ
T þ τ3C

ð1Þ
T ÞvμSνN

#
þ…; ð39Þ

where N ¼ ðpnÞT is the nonrelativistic nucleon doublet with mass mN , velocity vμ, and the spin Sμ [vμ ¼ ð1; 0Þ and
Sμ ¼ ð0; σ=2Þ in the nucleon rest frame]. The matching coefficients are given by

Cð0Þ
S ¼ v2

$
σπN

mu þmd
ImCð1Þeeuu

lequ þ 16π
9

ðmN − σπN − σsÞCeG

%
;

Cð1Þ
S ¼ v2

1

2

δmN

md −mu
ImCð1Þeeuu

lequ ;

Cð0Þ
P ¼ −8πv2ðΔu þ ΔdÞmNCeG̃; Cð1Þ

P ¼ v2
gAmN

mu þmd
ImCð1Þeeuu

lequ − 8πv2gAmN
md −mu

mu þmd
CeG̃;

Cð0Þ
T ¼ v2ðgdT þ guTÞImCð3Þeeuu

lequ ; Cð1Þ
T ¼ v2ðgdT − guTÞImCð3Þeeuu

lequ : ð40Þ

in terms of the hadronic matrix elements [62–65]

σπN ¼ ð59.1' 3.5Þ MeV; σs ¼ ð41.1þ11.3
−10.0Þ MeV; δmN ¼ ð2.32' 0.17Þ MeV;

gA ¼ 1.27' 0.002; Δu ¼ 0.842' 0.012; Δd ¼ −0.427' 0.013: ð41Þ

Hadronic operators.—More complicated are the purely
hadronic operators such as the quark (chromo-)EDMs and
four-quark operators. We begin with the analysis of quark
EDMs, which are induced in the LQ scenario as well as the
MSSM. Due to the explicit appearance of the electromag-
netic field strength, quark EDMs mainly induce hadronic
operators that contain explicit photons as well (operators
without photons are suppressed by αem=π). The most
important operators are the nucleon EDMs, related to the
quark EDMs by

dnðdqÞ ¼ guTdu þ gdTdd;

dpðdqÞ ¼ guTdd þ gdTdu; ð42Þ

where guT ¼ −0.213' 0.011 and gdT ¼ 0.820' 0.029.
These so-called tensor charges are obtained from lattice-
QCD calculations [66] and have very small theoretical
uncertainties.
The quark chromo-EDMs also contribute to nucleon

EDMs, but there are no lattice-QCD calculations available
at present. The neutron EDM was evaluated using QCD
sum rules [67,68] giving

dnðd̃qÞ ¼ g̃nð4Qdd̃d −Qud̃uÞ; ð43Þ

where g̃n ¼ ð1' 0.5Þ0.55e=Qu. We express the proton
EDM through a quark model relation

dpðd̃qÞ ¼ c̃pg̃nð−4Qdd̃u þQud̃dÞ; ð44Þ

so that dp and dn depend on the same QCD matrix element
g̃n. We use c̃p ¼ 1' 0.2 to account for possible isospin
breaking. These relations are valid only under a Peccei-
Quinn mechanism, that is the expressions take into account
the contribution from the induced θ̄ term.
In addition to nucleon EDMs, the quark chromo-EDMs

also induce CP-violating pion-nucleon interactions. The
most important operators are given by

L ¼ ḡ0N̄τ · πN þ ḡ1N̄π3N ð45Þ

in terms of the pion triplet π⃗. These couplings were
evaluated with QCD sum rules as well but come with
rather large uncertainties [69]. Chiral perturbation theory
can be used to obtain some further insight in these matrix

JORDY DE VRIES et al. PHYS. REV. D 104, 055039 (2021)

055039-8

�̅�' = 3.4 ± 2.4 ×10"#�̅� ± 2.2 ± 1.6 ×10"#GeV$𝑤
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�̅�'~	4𝜋
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Λ7$
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χPT & baryon spectrum; 
larger than 4𝜋×NDA
(de Vries, Mereghetti, 
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χPT & QCD sum rules;
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(Osamura, Gubler, Yamanaka ‘22)

χPT & QCD sum rules;
enhanced by 

<)*
=> ∼ 4𝜋  

(de Vries et al ‘21)
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Disentangling 𝑑9 and 𝐶: with paramagnetic systems

(3.15)
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�1.2(4)⇥ 10�3de +
⇥
�0.006CS + 1.6⇥ 10�3CP + 0.57CT

⇤
⇥ 10�7e fm (3.16)

4 Disentangling the UV sources with EDM measurements

4.1 de and CS

Let us choose HfF+ and ThO to determine de and CS , since EDMs of these molecules are

most accurately measured among paramagnetic systems up to now. Eq. (3.2) and Eq.

(3.3) can be written as
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!
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with
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!
. (4.2)

The determinant of the matrix MHT comes out to be

Det(MHT) = 2.5(4) · 1037. (4.3)

This determinant is non-vanishing with 6 sigma significance, which means that the system

is invertible even with the involved theoretical uncertainties, and we can solve it for (de, CS)

given experimental data on (!HfF+ ,!ThO). Inverting Eq. (4.1), we find
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For instance, the currently measured values for !HfF+ and !ThO are
 
!HfF+

!ThO

!
=

 
0.0459(933)

0.510(683)

!
[mrad/s]. (4.5)

Eq. (4.4) with the experimental input (4.5) gives us
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�0.07 ḡ0 + 0.25+0.89
�0.63 ḡ1
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Invertible!

Current experimental data Still consistent with 𝑑) = 𝐶@ = 0 
Roussy et al ’23
ACME,  Andreev et al ‘18
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(2.25)

ḡ1(d̃q) ' �g1
1

2f⇡
(d̃u � d̃d)

m2
0

2

�⇡N
m̄

= �0.095(31)K2GeV2, (2.26)

at the matching scale µ = 1 GeV, where we assumed the relation d̃q = mqK2 for the final

expression. Here d�mN/dm̄✏ ' �mN/m̄✏ = 2.49(17)MeV/m̄✏ for m̄ = (mu + md)/2 =

3.37(8) MeV, �⇡N = 59.1(35) MeV, and �g0,g1 = (1.0± 0.3) are introduced to account for

theoretical uncertainty.

ḡ1(w) ' h0|Lw|⇡
0
i

✓
�⇡N
f2
⇡m

2
⇡
+

5g2Am⇡

64⇡f4
⇡

◆
' ±(2.6± 1.5)⇥ 10�3wGeV2, (2.27)

at the matching scale µ = 1 GeV, where Lw = 1
3wf

abcGaµ
↵ Gb�

µ
eGc↵
� is the Weinberg operator,

and gA = 1.27. Here the sign ambiguity is from the matrix element of the Weinberg

operator estimated by QCD sum rules.

C1(✓̄, d̃q, w) ⇠ C2(✓̄, d̃q, w) ⇠ (4⇡)2
m⇤
⇤4
�
✓̄ +

4⇡

⇤2
�
(d̃u + d̃d) +

4⇡

⇤�
w, (2.28)

where ⇤� = 4⇡f⇡, m⇤ ' mumd/(mu+md), and the matching scale is µ⇤ ' 225 MeV given

by ↵s(µ⇤)/4⇡ ' 1/6 [? ] for which the one loop QCD beta function is comparable to the

two loop QCD beta function. In the following, the above NDA relations will be assumed

to hold up to the sign. Use Nodoka’s estimation beyond NDA.

If the semi-leptonic interactions are originated from Ceeqq’s,

C(0)
S = �g(0)S Im

⇣
C`edq � C(1)

`equ

⌘
, C(1)

S = �g(1)S Im
⇣
C`edq + C(1)

`equ

⌘

C(0)
T = �g(0)T Im

⇣
C(3)
`equ

⌘
, C(1)

T = �g(1)T Im
⇣
C(3)
`equ

⌘

C(0)
P = �g(0)P Im

⇣
C`edq + C(1)

`equ

⌘
, C(1)

P = �g(1)P Im
⇣
C`edq � C(1)

`equ

⌘
(2.29)

where g(0)i , g(0)i (i = S, T, P ) are the nucleon matrix elements of light quark bilinear opera-

tors.

CS = CS(Ceeqq, dp, dn, ḡ0, ḡ1) (2.30)

CS = CS(ḡ1, ḡ0, dn, dp) (2.31)

On the other hand, CS can be originated from hadronic interactions by long-distance

contributions [? ]:

CIR
S = CIR

S (dp, dn, ḡ0, ḡ1) (2.32)
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Thus the current measurements are yet consistent with de = CS = 0.

On the other hand, suppose that de = 10�30 [e cm] and CS ⇡ 0. In this case, the

theoretically predicted values for (!HfF+ ,!ThO) are given by Eq. (4.1) as
 
!HfF+

!ThO

!
=

 
0.0349(14)

0.1206(49)

!
[mrad/s] (4.7)

Let us assume that the future experiments would confirm the central values of this theo-

retical prediction within 10 % error. In this case, Eq. (4.4) gives us
 
de
CS

!
=

 
1.0(6) · 10�30[e cm]

0(5) · 10�11

!
(4.8)

Here the errors are mainly due to the theoretical uncertainties in Eq. (4.4).

CS can be either from Ceeqq’s or
n
✓̄, w, d̃u, d̃d, du, dd

o
.

1. If they are from Ceeqq’s, C
(0)
P and C(1)

P are determined by Eq. (2.29), while a single

parameter C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) remains to be independent.

2. If they are from
n
✓̄, w, d̃u, d̃d, du, dd

o
, there must be large hadronic CP violation

which can be detected by light nuclei or diamagnetic atoms.

In order to determine the origin of CS , we thus have to look at diamagnetic systems.

4.2 Hadronic sources and CT

The remaining 7 UV parameters
n
✓̄, w, d̃u, d̃d, du, dd, Im(C(3)

`equ)
o
may be determined by the

measurements of dp, dn, dD, dHe, and three diamagnetic atoms. In particular, dHg will be

useful for determining C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) for the case 1.

As an exercise, let us first examine the EDM inverse problem for three hadronic UV

sources (✓̄,K2, w). In order to determine them, we may use dn, dD, dXe. Also let us assume

that the PQ mechanism is working here.
0

B@
dn
dD
dXe

1

CA [e cm]�1 = MnDXe

0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA (4.9)

with

MnDXe =

0

B@
3.1(19) · 10�17 3.4(25) · 10�17 4.0(24) · 10�16

�8(4) · 10�17
�1.8(6) · 10�15

�6(4) · 10�16

�1.9(5) · 10�20 1.4(5) · 10�19 5.4(23) · 10�20

1

CA . (4.10)

Det(MnDXe) = �1.8(11) · 10�50 (4.11)

Thus the system is invertible.
0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA = M
�1
nDXe

0

B@
dn
dD
dXe

1

CA [e cm]�1 (4.12)
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If 𝑑) 	= 	 10"#-	e cm and 𝐶@ ≈ 	0

with experimental 
errors below 10% level

Theoretical predictions

Measurements of two different paramagnetic EDMs may 
successfully disentangle 𝑑< and 𝐶=. 

If a non-zero 𝐶= is discovered, 𝐶>	can be either from 𝐶<<?? or 
hadronic sources.
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𝐶! from hadronic sources
V Flambaum,  M Pospelov,  A Ritz,  Y Stadnik ‘19

(2.25)

ḡ1(d̃q) ' �g1
1

2f⇡
(d̃u � d̃d)

m2
0

2

�⇡N
m̄

= �0.095(31)K2GeV2, (2.26)

at the matching scale µ = 1 GeV, where we assumed the relation d̃q = mqK2 for the final

expression. Here d�mN/dm̄✏ ' �mN/m̄✏ = 2.49(17)MeV/m̄✏ for m̄ = (mu + md)/2 =
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ḡ1(w) ' h0|Lw|⇡
0
i

✓
�⇡N
f2
⇡m

2
⇡
+

5g2Am⇡

64⇡f4
⇡

◆
' ±(2.6± 1.5)⇥ 10�3wGeV2, (2.27)

at the matching scale µ = 1 GeV, where Lw = 1
3wf

abcGaµ
↵ Gb�

µ
eGc↵
� is the Weinberg operator,

and gA = 1.27. Here the sign ambiguity is from the matrix element of the Weinberg

operator estimated by QCD sum rules.

C1(✓̄, d̃q, w) ⇠ C2(✓̄, d̃q, w) ⇠ (4⇡)2
m⇤
⇤4
�
✓̄ +

4⇡

⇤2
�
(d̃u + d̃d) +

4⇡

⇤�
w, (2.28)

where ⇤� = 4⇡f⇡, m⇤ ' mumd/(mu+md), and the matching scale is µ⇤ ' 225 MeV given

by ↵s(µ⇤)/4⇡ ' 1/6 [? ] for which the one loop QCD beta function is comparable to the

two loop QCD beta function. In the following, the above NDA relations will be assumed

to hold up to the sign. Use Nodoka’s estimation beyond NDA.

If the semi-leptonic interactions are originated from Ceeqq’s,

C(0)
S = �g(0)S Im

⇣
C`edq � C(1)

`equ

⌘
, C(1)

S = �g(1)S Im
⇣
C`edq + C(1)

`equ

⌘

C(0)
T = �g(0)T Im

⇣
C(3)
`equ

⌘
, C(1)

T = �g(1)T Im
⇣
C(3)
`equ

⌘

C(0)
P = �g(0)P Im

⇣
C`edq + C(1)

`equ

⌘
, C(1)

P = �g(1)P Im
⇣
C`edq � C(1)

`equ

⌘
(2.29)

where g(0)i , g(0)i (i = S, T, P ) are the nucleon matrix elements of light quark bilinear opera-

tors.

CS = CS(Ceeqq, dp, dn, ḡ0, ḡ1) (2.30)

CS = CS(ḡ1, ḡ0, dn, dp) (2.31)

On the other hand, CS can be originated from hadronic interactions by long-distance

contributions [? ]:

CIR
S = CIR

S (dp, dn, ḡ0, ḡ1) (2.32)
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If a non-zero 𝐶= originates from the hadronic sources, there must 
be large diamagnetic EDMs as well, while not if 𝐶= is from 𝐶<<??.

2

semileptonic operators of the form,

L = Cs

SP

GF
p
2
ēi�5e(p̄p+ n̄n) + Ct

SP

GF
p
2
ēi�5e(p̄p� n̄n) ,

(1)
where e, n and p refer to the electron, neutron and
proton fields, respectively, and Cs,t

SP
are the couplings

for the singlet and triplet operators, respectively. The
subscript SP denotes the nucleon-scalar and electron-
pseudoscalar two-fermion bilinears. The semileptonic op-
erators CSP in (1) arise in the absence of any nuclear
spin and are coherently enhanced by the number of nu-
cleons in the nucleus, singling them out as the primary
contributors to paramagnetic EDMs beyond the electron
EDM, � i

2
deēFµ⌫�µ⌫�5e. Hadronic contributions to de,

e.g. from the QCD ✓ term, have been considered pre-
viously [19, 20], but the semileptonic operators above
provide the leading sensitivity in atomic and molecu-
lar experiments. In particular, the leading source of
paramagnetic EDMs due to the CKM phase is the CSP

operator [21], mediated by two-photon exchange. Be-
yond the Standard Model and extensions involving extra
elementary-particle generations, new sources of CP vio-
lation that manifest themselves in paramagnetic systems
predominantly via the semileptonic operator CSP , rather
than de, may arise in supersymmetric models and multi-
Higgs doublet models (for a general overview of these
types of models, see e.g. [4]).

In paramagnetic EDM experiments, the induced shift
of atomic/molecular energy levels under an applied ex-
ternal electric field Eext can be written in the form

�E = �deEe↵ �Wc


Cs

SP
+

✓
Z �N

A

◆
Ct

SP

�
+ · · · , (2)

where the factors Ee↵ and Wc are quantities that depend
on the small Eext, and Z, N and A denote the proton,
neutron and total nucleon numbers of the nucleus, re-
spectively. They are enhanced by a relativistic violation
of the Schi↵ theorem and (for molecular systems) the po-
larisability [6], and are now known to good precision for a
variety of molecular species, see e.g. [22–28]. The existing
null result from the ACME experiment [14], using ThO,
leads to the following 90% confidence-level constraint on
the e↵ective CSP coupling averaged over the p� n com-
position of the Th nucleus:

|Cs

SP
� 0.22Ct

SP
| = |0.39Cp

SP
+ 0.61Cn

SP
| < 7.3⇥ 10�10 .

(3)
Quite generically, for hadronic sources of CP violation,
the de contribution to atomic/molecular EDMs is sub-
dominant to CSP .

The semileptonic operators in (1) can in turn be in-
duced by the leading sources of CP violation at the
hadronic level,

Lhadronic = �
i

2
dnn̄Fµ⌫�

µ⌫�5n�
i

2
dpp̄Fµ⌫�

µ⌫�5p

+ ḡ(0)
⇡NN

N̄⌧aN⇡a + ḡ(1)
⇡NN

N̄N⇡0 + ... , (4)

FIG. 1. (Color online) CP -violating leading order (LO)
semileptonic processes involving the exchange of a ⇡0 or ⌘
meson. The grey vertex denotes the anomalous coupling (at
the one-loop level) of the ⇡0/⌘ meson to the electromagnetic
field, while the magenta vertex denotes the CP -violating cou-
pling with the nucleon.

where N = (p, n)T is the nucleon doublet, dn,p refers to

nucleon EDMs, and ḡ(0,1)
⇡NN

are the isovector and isoscalar
CP -odd pion-nucleon couplings, respectively. This for-
mula can also be generalised to include CP -odd inter-

actions with the octet ⌘ meson, ⌘N̄(ḡ(0)
⌘NN

+ ḡ(1)
⌘NN

⌧3)N .
Thus we aim to determine

CSP = CSP (dn, dp, ḡ
(0)

⇡/⌘NN
, ḡ(1)

⇡/⌘NN
, . . .) , (5)

that can be induced in particular by two-photon exchange
processes (see Figs. 1, 2 and 3). The hadronic-scale inter-
actions in (4) are in turn induced by more fundamental
sources, such as ✓QCD, quark EDMs and chromo EDMs
[4]. In what follows, we will examine the leading de-
pendencies in (5), and explore the induced sensitivity to
fundamental CP -violating hadronic sources.

2. SEMILEPTONIC OPERATORS INDUCED BY

CP-ODD NUCLEON POLARISABILITIES

When the underlying sources of CP violation are
hadronic and the nuclei of interest are spinless, the
semileptonic couplings CSP in (1) can be generated by
two-photon exchange processes via CP -odd nucleon po-
larisabilities,

L = �
1

4
N̄(�s + ⌧3�t)NFµ⌫

eFµ⌫ (6)

= (�pp̄p+ �nn̄n)E ·B . (7)

Application of an external electric field E leads to an in-
duced magnetic dipole moment �E, and the sign in (6,7)
is chosen to coincide with the CP -even polarisability con-
vention, L = ↵polE

2/2.
A complete calculation of the CP -odd nuclear scalar

polarisability is a complicated task, but at the nucleon
level it can be performed using chiral perturbation the-
ory. The leading order (LO) terms arise at O(m�2

⇡
) in

�̅�-,'
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FIG. 2. (Color online) CP -violating next-to-leading order
(NLO) semileptonic processes involving a charged-pion loop.
The magenta vertex again denotes the CP -violating coupling
of the pion with the nucleon, while the black vertex denotes
the coupling of the electromagnetic field to the nucleon mag-
netic dipole moment. The analogous processes with the ma-
genta vertex interchanged with the other pion-nucleon vertex
are implicit.

the pion mass m⇡, as shown in Fig. 1, and are given by

�LO

p(n)
= �

↵

⇡F⇡m2
⇡

"
ḡ(1)
⇡NN

+(�)ḡ(0)
⇡NN

+
ḡ(0)
⌘NN
p
3

m2
⇡
F⇡

m2
⌘
F⌘

#
,

(8)
where F⇡ ⇡ 92MeV is the pion decay constant, and F⌘

is the octet ⌘-meson decay constant, which we take to
be F⌘ ⇡ F⇡. The appearance of the factor ↵/⇡ in this
formula is due to the one-loop nature of the ⇡0�� vertex.
We have neglected small isospin-breaking e↵ects, ⌘ � ⌘0

and ⇡0
� ⌘ mixings, as well as ḡ(1)

⌘NN
, as only the singlet

contribution of ⌘ proves to be important in the concrete
examples below. We next address the first formally sub-
leading correction, which emerges from a charged-pion
loop that interacts with E, while the magnetic moment
of the nucleon interacts with B (see Fig. 2). The next-
to-leading order (NLO) result arises at O(m�1

⇡
), and is

given by

�NLO

k
=

↵gAḡ
(0)

⇡NN

4F⇡mNm⇡

⇢
�µn/µN for k = p ,
µp/µN for k = n ,

(9)

where gA ⇡ 1.3 is the axial triplet coupling, mN is the
nucleon mass, µn,p are the nucleon magnetic dipole mo-
ments, and µN is the nuclear magneton. We observe that
this answer is numerically rather larger than would have
naively been expected, in part as a result of the large val-
ues of µn,p. Also, the CP -odd polarisabilities of neutrons
and protons have the same sign, as µn is negative while
µp is positive, and so add constructively.

To compute the contributions to CSP , we next per-
form the integral over the diphoton loop, which is soft
compared to the hadronic scales that were integrated out
above, and average the result over the nucleon content in
a nucleus. We find, to logarithmic accuracy, a known
result for the semileptonic operator in the contact ap-
proximation:

GF
p
2
C(�)

SP
= �

✓
Z

A
�p +

N

A
�n

◆
3↵me

2⇡
ln

✓
M

me

◆
. (10)

FIG. 3. (Color online) CP -violating µ � d semileptonic pro-
cesses with internal nuclear excitations. The black vertex
again denotes the interaction of the electromagnetic field with
the nucleon magnetic dipole moment µ, while the cyan ver-
tex denotes the interaction with the nucleon electric dipole
moment d. The analogous processes with the black and cyan
vertices interchanged are implicit.

In the limit of a pointlike and structureless nucleus, the
renormalisation scale M is di↵erent for the LO and NLO
contributions: for the LO terms, it is set by the ⇡/⌘
form factor (i.e., a hadronic scale related to the ⇢ meson
mass m⇢), while for the NLO process, M ⇡ m⇡ due to
the presence of the pion propagators in the charged-pion
loop. The nuclear size, which sets the value of the atomic
s�pmixing matrix element induced by CSP [29, 30], does
not play any role in regularising the integral, which ex-
tends down to ⇠ me (corresponding to an interaction on
the length scale ⇠ m�1

e
). The modification of the forms

of relativistic atomic wavefunctions on the super-nuclear
length scales (8Z↵me)�1 . r . m�1

e
in su�ciently heavy

atoms (see, e.g., [30]) gives rise to non-logarithmic cor-
rections to atomic s�p mixing matrix elements. We also
note that going beyond the logarithmic approximation in
the NLO case would prevent the factorisation of the pho-
ton and pion loops, and would necessitate a full two-loop
calculation.
Thus far, we have neglected the fact that the internal

nuclear dynamics may a↵ect the values of the � coe�-
cients, and also lead to additional contributions to the
CSP coe�cients. For example, the pion loop calculation
in the NLO process above assumed that the intermedi-
ate nucleon propagator is “free”, while in reality it will be
modified by nuclear in-medium e↵ects. Moreover, EDMs
of individual nucleons will lead to semileptonic operators
that do not reduce to the simple E · B nuclear polaris-
ability form — we now address these types of processes.

3. SEMILEPTONIC OPERATORS INDUCED BY

NUCLEON EDMS

Let us consider the semileptonic processes in Fig. 3
that correspond to the exchange of two photons between
atomic electrons and nucleons, with internal nuclear ex-
citations. In this case, we assume that the nucleons pos-
sess both magnetic (µ) and electric (d) dipole moments,
as defined in (4) for the latter. We consider the simplest

�̅�-
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nucleon mass, µn,p are the nucleon magnetic dipole mo-
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naively been expected, in part as a result of the large val-
ues of µn,p. Also, the CP -odd polarisabilities of neutrons
and protons have the same sign, as µn is negative while
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To compute the contributions to CSP , we next per-
form the integral over the diphoton loop, which is soft
compared to the hadronic scales that were integrated out
above, and average the result over the nucleon content in
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In the limit of a pointlike and structureless nucleus, the
renormalisation scale M is di↵erent for the LO and NLO
contributions: for the LO terms, it is set by the ⇡/⌘
form factor (i.e., a hadronic scale related to the ⇢ meson
mass m⇢), while for the NLO process, M ⇡ m⇡ due to
the presence of the pion propagators in the charged-pion
loop. The nuclear size, which sets the value of the atomic
s�pmixing matrix element induced by CSP [29, 30], does
not play any role in regularising the integral, which ex-
tends down to ⇠ me (corresponding to an interaction on
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). The modification of the forms

of relativistic atomic wavefunctions on the super-nuclear
length scales (8Z↵me)�1 . r . m�1
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atoms (see, e.g., [30]) gives rise to non-logarithmic cor-
rections to atomic s�p mixing matrix elements. We also
note that going beyond the logarithmic approximation in
the NLO case would prevent the factorisation of the pho-
ton and pion loops, and would necessitate a full two-loop
calculation.
Thus far, we have neglected the fact that the internal

nuclear dynamics may a↵ect the values of the � coe�-
cients, and also lead to additional contributions to the
CSP coe�cients. For example, the pion loop calculation
in the NLO process above assumed that the intermedi-
ate nucleon propagator is “free”, while in reality it will be
modified by nuclear in-medium e↵ects. Moreover, EDMs
of individual nucleons will lead to semileptonic operators
that do not reduce to the simple E · B nuclear polaris-
ability form — we now address these types of processes.

3. SEMILEPTONIC OPERATORS INDUCED BY

NUCLEON EDMS

Let us consider the semileptonic processes in Fig. 3
that correspond to the exchange of two photons between
atomic electrons and nucleons, with internal nuclear ex-
citations. In this case, we assume that the nucleons pos-
sess both magnetic (µ) and electric (d) dipole moments,
as defined in (4) for the latter. We consider the simplest
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Disentangling hadronic sources with light nuclei and 
diamagnetic systems

In principle, the EDM measurements of those polar molecules or paramagnetic atoms

may be able to determine de, C
(0)
S , and C(1)

S . However, the ratio r = (Z�N)/(Z+N) ' 0.2

in CS = C(0)
S + rC(1)

S is almost the same regardless of atoms or molecules with variations

up to ±0.03. Thus it turns out that we cannot experimentally determine C(0)
S and C(1)

S

separately given the theoretical uncertainties in the coe�cients in Eqs. (??-??) but only

the combination CS which is almost independent of the systems. Therefore only two

paramagnetic molecular EDMs are enough to determine de and CS .

3.2 Light nuclei and diamagnetic atoms

dA = dA(dp, dn, ḡ0, ḡ1, C1, C2) (3.9)

Light nuclei

dp, dn (3.10)

dD = 0.94(1)(dn + dp) + 0.18(2)ḡ1 e fm (3.11)

dHe = 0.9dn � 0.03(1)dp

+
h
0.11(1)ḡ0 + 0.14(2)ḡ1� (0.04(2)C1 � 0.09(2)C2) fm

�3
i
e fm

(3.12)

Diamagnetic atoms

dHg = �2.1(5) · 10�4
⇥
1.9(1)dn + 0.20(6)dp +

�
0.13+0.5

�0.07 ḡ0 + 0.25+0.89
�0.63 ḡ1

�
e fm

⇤

�0.012(12)de +
⇥
�0.028(6)CS + 6 · 10�3CP + 1.7CT

⇤
⇥ 10�7e fm

dRa = 7.7⇥ 10�4
⇥
(2.5± 7.5)ḡ0 � (65± 40)ḡ1�(1.1(3.3)C1 � 3.2(2.1)C2) fm

�3
⇤
e fm

�0.054(2)de +
⇥
0.029CS � 6.4 · 10�3CP � 1.8CT

⇤
· 10�6e fm

dXe = 1.3⇥ 10�5dn � [1.6ḡ0 + 1.7ḡ1]⇥ 10�5 e fm

�1.2(4)⇥ 10�3de +
⇥
�0.006CS + 1.6⇥ 10�3CP + 0.57CT

⇤
⇥ 10�7e fm (3.13)

4 Disentangling the UV sources with EDM measurements

4.1 de and CS

Let us choose HfF+ and ThO to determine de and CS , since EDMs of these molecules are

most accurately measured among paramagnetic systems up to now. Eq. (??) and Eq. (??)

can be written as
 
!HfF+

!ThO

!
[mrad/s]�1 = MHT

 
de [e cm]�1

CS

!
(4.1)

with

MHT =

 
3.49(14) · 1028 3.20(13) · 108

1.206(49) · 1029 1.816(73) · 109

!
. (4.2)

– 6 –

In principle, we cannot fully disentangle hadronic UV sources more than 5. 

Moreover, by chiral symmetry properties, the 4-nucleon interactions 𝐶' 
and 𝐶$ can be sizable only for the gluon CEDM (Weinberg operator) 
à 𝐶' and 𝐶$	are not independent effectively

𝐴 = 𝑝, 𝑛, 𝐷, 𝐻𝑒, 𝐻𝑔, 𝑅𝑎,…	

3.1 Paramagnetic molecules and atoms

Polar molecules

!HfF+ = 3.49(14) · 1028 de[mrad/s][e cm]�1 + 3.20(13) · 108CS [mrad/s] (3.2)

!ThO = 1.206(49) · 1029 de[mrad/s][e cm]�1 + 1.816(73) · 109CS [mrad/s] (3.3)

!YbF = 1.96(15) · 1028 de[mrad/s][e cm]�1 + 1.76(20) · 108CS [mrad/s] (3.4)

!BaF = 1.97(75) · 1028 de[mrad/s][e cm]�1 + 1.270(18) · 108CS [mrad/s] (3.5)

Paramagnetic atoms

dTl = �558(28)de +
�
�0.68CS + 1.5 · 10�6CP + 0.5 · 10�3CT

�
· 10�4e fm (3.6)

dCs = 123(4)de +
�
0.78CS + 2.2 · 10�5CP + 0.92 · 10�2CT

�
· 10�5e fm (3.7)

dFr = 799(24)de + 1.05(3)CS · 10�4e fm (3.8)

In principle, the EDM measurements of those polar molecules or paramagnetic atoms

may be able to determine de, C
(0)
S , and C(1)

S . However, the ratio r = (Z�N)/(Z+N) ' 0.2

in CS = C(0)
S + rC(1)

S is almost the same regardless of atoms or molecules with variations

up to ±0.03. Thus it turns out that we cannot experimentally determine C(0)
S and C(1)

S

separately given the theoretical uncertainties in the coe�cients in Eqs. (3.2-3.5) but only

the combination CS which is almost independent of the systems. Therefore only two

paramagnetic molecular EDMs are enough to determine de and CS .

3.2 Light nuclei and diamagnetic atoms

dA = dA(dp, dn, ḡ0, ḡ1, C1, C2) (3.9)

XCPV 2

n
✓̄, w, d̃u, d̃d, du, dd, C

(1)
quqd, C

(8)
quqd

o
(3.10)

XCPV 2

n
✓̄, w, d̃PQd , d̃d

o
(3.11)

XCPV 2

n
✓̄, w, d̃PQd , du, dd

o
(3.12)

Light nuclei

dp, dn (3.13)

dD = 0.94(1)(dn + dp) + 0.18(2)ḡ1 e fm (3.14)

dHe = 0.9dn � 0.03(1)dp

+
h
0.11(1)ḡ0 + 0.14(2)ḡ1� (0.04(2)C1 � 0.09(2)C2) fm

�3
i
e fm

– 6 –

6 independent 
observables

while there are 8 potentially leading CPV UV sources à cannot be fully 
disentangled. 
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A motivated class of BSM scenarios is that CP violation 
from new physics is mediated to the SM sector dominantly 
by color and Higgs interactions. 

Barbieri, Pomarol, Rattazi, Strumia  ‘04
Cirigliano et al ‘19
K Choi, SHI, K Jodlowski ‘23

Also assuming  7𝑑3 ∼
4#
4$
	tan	𝛽	 7𝑑5 ≫ 7𝑑5,

𝑋@AB ∈ {�̅�, 𝑤, 6𝑑C}

Ex) MSSM with a universal SUSY breaking scale, Split SUSY with a 
light gluino, 2 HDMs, Vector-like quarks, etc 
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Using three systems, e.g. (𝑑%, 𝑑6, 𝑑78),

Thus the current measurements are yet consistent with de = CS = 0.

On the other hand, suppose that de = 10�30 [e cm] and CS ⇡ 0. In this case, the

theoretically predicted values for (!HfF+ ,!ThO) are given by Eq. (4.1) as
 
!HfF+

!ThO

!
=

 
0.0349(14)

0.1206(49)

!
[mrad/s] (4.7)

Let us assume that the future experiments would confirm the central values of this theo-

retical prediction within 10 % error. In this case, Eq. (4.4) gives us
 
de
CS

!
=

 
1.0(6) · 10�30[e cm]

0(5) · 10�11

!
(4.8)

Here the errors are mainly due to the theoretical uncertainties in Eq. (4.4).

CS can be either from Ceeqq’s or
n
✓̄, w, d̃u, d̃d, du, dd

o
.

1. If they are from Ceeqq’s, C
(0)
P and C(1)

P are determined by Eq. (2.29), while a single

parameter C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) remains to be independent.

2. If they are from
n
✓̄, w, d̃u, d̃d, du, dd

o
, there must be large hadronic CP violation

which can be detected by light nuclei or diamagnetic atoms.

In order to determine the origin of CS , we thus have to look at diamagnetic systems.

4.2 Hadronic sources and CT

The remaining 7 UV parameters
n
✓̄, w, d̃u, d̃d, du, dd, Im(C(3)

`equ)
o
may be determined by the

measurements of dp, dn, dD, dHe, and three diamagnetic atoms. In particular, dHg will be

useful for determining C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) for the case 1.

As an exercise, let us first examine the EDM inverse problem for three hadronic UV

sources (✓̄,K2, w). In order to determine them, we may use dn, dD, dXe. Also let us assume

that the PQ mechanism is working here.
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The different magnitudes of the neutron EDM are predicted from the 
quark CEDM depending on the existence of QCD axion.

5.9 34 ⋅ 10%&'

with QCD axion
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−9 4 ⋅ 10%&( (𝐶$ = 𝑤/𝑓. → −𝑤/𝑓.)

Also using the NDA value for 𝐶' = 𝐶$ = 𝑤/𝑓.,

Thus the current measurements are yet consistent with de = CS = 0.

On the other hand, suppose that de = 10�30 [e cm] and CS ⇡ 0. In this case, the

theoretically predicted values for (!HfF+ ,!ThO) are given by Eq. (4.1) as
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[mrad/s] (4.7)

Let us assume that the future experiments would confirm the central values of this theo-

retical prediction within 10 % error. In this case, Eq. (4.4) gives us

 
de
CS

!
=

 
1.0(6) · 10�30[e cm]

0(5) · 10�11

!
(4.8)

Here the errors are mainly due to the theoretical uncertainties in Eq. (4.4).

CS can be either from Ceeqq’s or
n
✓̄, w, d̃u, d̃d, du, dd

o
.

1. If they are from Ceeqq’s, C
(0)
P and C(1)

P are determined by Eq. (2.29), while a single

parameter C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) remains to be independent.

2. If they are from
n
✓̄, w, d̃u, d̃d, du, dd

o
, there must be large hadronic CP violation

which can be detected by light nuclei or diamagnetic atoms.

In order to determine the origin of CS , we thus have to look at diamagnetic systems.

4.2 Hadronic sources and CT

The remaining 7 UV parameters
n
✓̄, w, d̃u, d̃d, du, dd, Im(C(3)

`equ)
o
may be determined by the

measurements of dp, dn, dD, dHe, and three diamagnetic atoms. In particular, dHg will be

useful for determining C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) for the case 1.

As an exercise, let us first examine the EDM inverse problem for three hadronic UV

sources (✓̄,K2, w). In order to determine them, we may use dn, dD, dXe. Also let us assume

that the PQ mechanism is working here.

0

B@
dn
dD
dHe

1

CA [e cm]�1 = MnDHe

0

B@
✓̄

w [GeV]2

d̃d [GeV]

1

CA (4.9)

with

MnDHe =

0

B@
3.1(18) · 10�17 4.0(24) · 10�16 6(6) · 10�16

�8(4) · 10�17
�6.2(25) · 10�16

�6.8(25) · 10�13

1.5(5) · 10�16 4(4) · 10�16
�5.4(20) · 10�13

1

CA (4.10)

Det(MnDHe) = �3.9(35) · 10�44
! � 6(4) · 10�44 (4.11)

– 8 –

(𝐶$ = 𝑤/𝑓. → −𝑤/𝑓.)

Invertible!

cf) Yamanaka, Oka ‘22
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Figure 2. The predicted range of the deuteron EDM compared with the neutron EDM from the
CPV sources under consideration. The shaded regions denote the cases where the EDMs originate
dominantly from i) the QCD θ̄-parameter (gray), ii) the quark CEDMs without (red) or with (blue)
QCD axion, and iii) the gluon CEDM without (green) or with (orange) QCD axion. Here we assume
that the CEDMs are generated at Λ = 1TeV, but the results are not sensitive to the value of Λ.

Figure 3. The predicted range of 3He++ EDM compared with the neutron EDM from the CPV
sources under consideration. The four plots are obtained by assuming s1C1(w) = s2C2(w) = w/fπ
with (s1, s2) = (+1,+1) (top-left), (+1,−1) (top-right), (−1,+1) (bottom-left), and (−1,−1) (bottom-
right). The color code is the same as figure 2: i) the QCD θ̄-parameter (gray), ii) the quark CEDMs
without (red) or with (blue) QCD axion, and iii) the gluon CEDM without (green) or with (orange)
QCD axion. Here we assume that the CEDMs are generated at Λ = 1TeV, but again the results are
not sensitive to the value of Λ.
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𝑐& = 𝑐) = 𝑤/𝑓* 𝑐& = −𝑐)= 𝑤/𝑓*

Gray: �̅� 
Brown: 𝑤
Blue: I𝑑5 (with QCD axion)
Red: I𝑑5 (without QCD axion)

K Choi, SHI, K Jodlowski ‘23
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Considering the UV sources (𝑑1, 𝑑2)	(e.g. typical split SUSY) instead of I𝑑5, 

𝑋@AB ∈ {�̅�, 𝑤, 𝑑P, 𝑑C}

Using the nucleons and light nuclei (𝑑,, 𝑑4, 𝑑B, 𝑑C)), and the lattice results 
for 𝑑!(𝑑1, 𝑑2),

Thus the current measurements are yet consistent with de = CS = 0.

On the other hand, suppose that de = 10�30 [e cm] and CS ⇡ 0. In this case, the

theoretically predicted values for (!HfF+ ,!ThO) are given by Eq. (4.1) as

 
!HfF+

!ThO

!
=

 
0.0349(14)

0.1206(49)

!
[mrad/s] (4.7)

Let us assume that the future experiments would confirm the central values of this theo-

retical prediction within 10 % error. In this case, Eq. (4.4) gives us

 
de
CS

!
=

 
1.0(6) · 10�30[e cm]

0(5) · 10�11

!
(4.8)

Here the errors are mainly due to the theoretical uncertainties in Eq. (4.4).

CS can be either from Ceeqq’s or
n
✓̄, w, d̃u, d̃d, du, dd

o
.

1. If they are from Ceeqq’s, C
(0)
P and C(1)

P are determined by Eq. (2.29), while a single

parameter C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) remains to be independent.

2. If they are from
n
✓̄, w, d̃u, d̃d, du, dd

o
, there must be large hadronic CP violation

which can be detected by light nuclei or diamagnetic atoms.

In order to determine the origin of CS , we thus have to look at diamagnetic systems.

4.2 Hadronic sources and CT

The remaining 7 UV parameters
n
✓̄, w, d̃u, d̃d, du, dd, Im(C(3)

`equ)
o
may be determined by the

measurements of dp, dn, dD, dHe, and three diamagnetic atoms. In particular, dHg will be

useful for determining C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) for the case 1.

As an exercise, let us first examine the EDM inverse problem for three hadronic UV

sources (✓̄,K2, w). In order to determine them, we may use dn, dD, dXe. Also let us assume

that the PQ mechanism is working here.

0

BBB@

dn
dp
dD
dHe

1

CCCA
[e cm]�1 = MnpDHe

0

BBB@

✓̄

w [GeV]2

du [GeV]

dd [GeV]

1

CCCA
(4.9)

with

MnpDHe =

0

BBB@

3.1(18) · 10�17 4.0(24) · 10�16
�1.8(10) · 10�15 7(4) · 10�15

�4.7(26) · 10�17
�3.6(21) · 10�16 7(4) · 10�15

�1.8(10) · 10�15

�8(4) · 10�17
�6.2(25) · 10�16 5.0(28) · 10�15 5.0(28) · 10�15

1.5(5) · 10�16
�9(4) · 10�16

�1.8(10) · 10�15 6(4) · 10�15

1

CCCA
(4.10)

Det(MnpDHe) = �(7± 9)⇥ 10�60 (4.11)

– 8 –

𝑐& = 𝑐) = 𝑤/𝑓*

Det(MnpDHe) = �(7± 5)⇥ 10�60 (4.12)

0

B@
dn
dD
dHe

1

CA [e cm]�1 = MnDHe

0

B@
✓̄

w [GeV]2

d̃d [GeV]

1

CA (4.13)

with

MnDHe =

0

B@
3.1(18) · 10�17 4.0(24) · 10�16 6(6) · 10�16

�8(4) · 10�17
�6.2(25) · 10�16

�6.8(25) · 10�13

1.5(5) · 10�16 4(4) · 10�16
�5.4(20) · 10�13

1

CA (4.14)

Det(MnDHe) = �3.9(35) · 10�44
! � 6(4) · 10�44 (4.15)

0

B@
dn
dD
dXe

1

CA [e cm]�1 = MnDXe

0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA (4.16)

with

MnDXe =

0

B@
3.1(19) · 10�17 3.4(25) · 10�17 4.0(24) · 10�16

�8(4) · 10�17
�1.8(6) · 10�15

�6(4) · 10�16

�1.9(5) · 10�20 1.4(5) · 10�19 5.4(23) · 10�20

1

CA . (4.17)

Det(MnDXe) = �1.8(11) · 10�50 (4.18)

Thus the system is invertible.
0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA = M
�1
nDXe

0

B@
dn
dD
dXe

1

CA [e cm]�1 (4.19)

M
�1
nDXe =

0

B@
0(5) · 1015 �3.0(29) · 1015 �4(4) · 1019

�9(7) · 1014 �5(4) · 1014 0.7(17) · 1018

2.5(18) · 1015 2.8(24) · 1014 2.9(28) · 1018

1

CA . (4.20)

For example, suppose that ✓̄ = 10�12 while K2 ⇡ w ⇡ 0. The theoretical prediction on

(dn, dD, dXe) in this case is
0

B@
dn
dD
dXe

1

CA [e cm]�1 =

0

B@
3.1(19) · 10�29

�8(4) · 10�29

�1.9(5) · 10�32

1

CA (4.21)

Assuming that the central values would be confirmed experimentally within 10% error, Eq.

(4.18) gives us
0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA =

0

B@
1.0(7) · 10�12

0(5) · 10�14

0(8) · 10�14

1

CA (4.22)

The errors are dominantly from the theoretical uncertainties in Eq. (4.19).
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Det(MnpDHe) = �(4± 4)⇥ 10�60 (4.11)

Det(MnpDHe) = �(7± 5)⇥ 10�60 (4.12)

0

B@
dn
dD
dHe

1

CA [e cm]�1 = MnDHe

0

B@
✓̄

w [GeV]2

d̃d [GeV]

1

CA (4.13)

with

MnDHe =

0

B@
3.1(18) · 10�17 4.0(24) · 10�16 6(6) · 10�16

�8(4) · 10�17
�6.2(25) · 10�16

�6.8(25) · 10�13

1.5(5) · 10�16 4(4) · 10�16
�5.4(20) · 10�13

1

CA (4.14)

Det(MnDHe) = �3.9(35) · 10�44
! � 6(4) · 10�44 (4.15)

0

B@
dn
dD
dXe

1

CA [e cm]�1 = MnDXe

0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA (4.16)

with

MnDXe =

0

B@
3.1(19) · 10�17 3.4(25) · 10�17 4.0(24) · 10�16

�8(4) · 10�17
�1.8(6) · 10�15

�6(4) · 10�16

�1.9(5) · 10�20 1.4(5) · 10�19 5.4(23) · 10�20

1

CA . (4.17)

Det(MnDXe) = �1.8(11) · 10�50 (4.18)

Thus the system is invertible.

0

B@
✓̄

K2 [GeV]2

w [GeV]2

1

CA = M
�1
nDXe

0

B@
dn
dD
dXe

1

CA [e cm]�1 (4.19)

M
�1
nDXe =

0

B@
0(5) · 1015 �3.0(29) · 1015 �4(4) · 1019

�9(7) · 1014 �5(4) · 1014 0.7(17) · 1018

2.5(18) · 1015 2.8(24) · 1014 2.9(28) · 1018

1

CA . (4.20)

For example, suppose that ✓̄ = 10�12 while K2 ⇡ w ⇡ 0. The theoretical prediction on

(dn, dD, dXe) in this case is

0

B@
dn
dD
dXe

1

CA [e cm]�1 =

0

B@
3.1(19) · 10�29

�8(4) · 10�29

�1.9(5) · 10�32

1

CA (4.21)

– 9 –

−9 4 ⋅ 10%&(

(𝐶) = 𝑤/𝑓* → −𝑤/𝑓*)
marginally 
invertible

Eq. (4.4) with the experimental input (4.5) gives us
 
de
CS

!
=

 
�0.3(11)⇥ 10�29[e cm]

0.5(11)⇥ 10�9

!
(4.6)

Thus the current measurements are yet consistent with de = CS = 0.

On the other hand, suppose that de = 10�30 [e cm] and CS ⇡ 0. In this case, the

theoretically predicted values for (!HfF+ ,!ThO) are given by Eq. (4.1) as
 
!HfF+

!ThO

!
=

 
0.0349(14)

0.1206(49)

!
[mrad/s] (4.7)

Let us assume that the future experiments would confirm the central values of this theo-

retical prediction within 10 % error. In this case, Eq. (4.4) gives us
 
de
CS

!
=

 
1.0(6) · 10�30[e cm]

0(5) · 10�11

!
(4.8)

Here the errors are mainly due to the theoretical uncertainties in Eq. (4.4).

CS can be either from Ceeqq’s or
n
✓̄, w, d̃u, d̃d, du, dd

o
.

1. If they are from Ceeqq’s, C
(0)
P and C(1)

P are determined by Eq. (2.29), while a single

parameter C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) remains to be independent.

2. If they are from
n
✓̄, w, d̃u, d̃d, du, dd

o
, there must be large hadronic CP violation

which can be detected by light nuclei or diamagnetic atoms.

In order to determine the origin of CS , we thus have to look at diamagnetic systems.

4.2 Hadronic sources and CT

The remaining 7 UV parameters
n
✓̄, w, d̃u, d̃d, du, dd, Im(C(3)

`equ)
o
may be determined by the

measurements of dp, dn, dD, dHe, and three diamagnetic atoms. In particular, dHg will be

useful for determining C(0)
T /g(0)T = C(1)

T /g(1)T = �Im(C(3)
`equ) for the case 1.

As an exercise, let us first examine the EDM inverse problem for three hadronic UV

sources (✓̄,K2, w). In order to determine them, we may use dn, dD, dXe. Also let us assume

that the PQ mechanism is working here.

0

BBB@

dn
dp
dD
dHe

1

CCCA
[e cm]�1 = MnpDHe

0

BBB@

✓̄

w [GeV]2

du [GeV]

dd [GeV]

1

CCCA
(4.9)

with

MnpDHe =

0

BBB@

3.1(18) · 10�17 4.0(24) · 10�16
�1.78(9) · 10�15 7.1(4) · 10�15

�4.7(26) · 10�17
�3.6(21) · 10�16 7.1(4) · 10�15

�1.78(9) · 10�15

�8(4) · 10�17
�6.2(25) · 10�16 5.02(26) · 10�15 5.02(26) · 10�15

1.5(5) · 10�16
�4(4) · 10�16

�1.82(9) · 10�15 6.47(32) · 10�15

1

CCCA
(4.10)

– 8 –
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𝑋@AB ∈ {�̅�, 𝑤, 6𝑑C, 𝑑P, 𝑑C}

Most generally for 5 different UV sources, e.g. 

We need EDM data on another light nucleus or a diamagnetic system.

Unfortunately (to our knowledge) no other theoretical computation of 
another light nucleus for the moment (except 3𝐻 which shares the 
structure of He and so doesn’t help),
And heavy diamagnetic atoms are subject to large theoretical uncertainties, 
not currently allowing to disentangle 5 UV sources.

dD = 0.94(1)(dn + dp) + 0.18(2)ḡ1 e fm (3.17)

dHe = 0.9dn � 0.03(1)dp

+
h
0.11(1)ḡ0 + 0.14(2)ḡ1� (0.04(2)C1 � 0.09(2)C2) fm

�3
i
e fm

(3.18)

Diamagnetic atoms

dHg = �2.1(5) · 10�4
⇥
1.9(1)dn + 0.20(6)dp +

�
0.13+0.5

�0.07 ḡ0 + 0.25+0.89
�0.63 ḡ1

�
e fm

⇤

�0.012(12)de +
⇥
�0.028(6)CS + 6 · 10�3CP + 1.7CT

⇤
⇥ 10�7e fm

dRa = 7.7⇥ 10�4
⇥
(2.5± 7.5)ḡ0 � (65± 40)ḡ1�(1.1(3.3)C1 � 3.2(2.1)C2) fm

�3
⇤
e fm

�0.054(2)de +
⇥
0.029CS � 6.4 · 10�3CP � 1.8CT

⇤
· 10�6e fm

dXe = 1.3⇥ 10�5dn � [1.6ḡ0 + 1.7ḡ1]⇥ 10�5 e fm

�1.2(4)⇥ 10�3de +
⇥
�0.006CS + 1.6⇥ 10�3CP + 0.57CT

⇤
⇥ 10�7e fm (3.19)

4 Disentangling the UV sources with EDM measurements

4.1 de and CS

Let us choose HfF+ and ThO to determine de and CS , since EDMs of these molecules are

most accurately measured among paramagnetic systems up to now. Eq. (3.2) and Eq.

(3.3) can be written as

 
!HfF+

!ThO

!
[mrad/s]�1 = MHT

 
de [e cm]�1

CS

!
(4.1)

with

MHT =

 
3.49(14) · 1028 3.20(13) · 108

1.206(49) · 1029 1.816(73) · 109

!
. (4.2)

The determinant of the matrix MHT comes out to be

Det(MHT) = 2.5(4) · 1037 (4.3)

This determinant is non-vanishing with 6 sigma significance, which means that the system

is invertible even with the involved theoretical uncertainties, and we can solve it for (de, CS)

given experimental data on (!HfF+ ,!ThO). Inverting Eq. (4.1), we find

 
de [e cm]�1

CS

!
=

 
7.3(13) · 10�29

�1.29(23) · 10�29

�4.9(9) · 10�9 1.41(25) · 10�9

! 
!HfF+

!ThO

!
[mrad/s]�1 (4.4)

For instance, the currently measured values for !HfF+ and !ThO are
 
!HfF+

!ThO

!
=

 
0.0459(933)

0.510(683)

!
[mrad/s] (4.5)
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dD = 0.94(1)(dn + dp) + 0.18(2)ḡ1 e fm (3.17)

dHe = 0.9dn � 0.03(1)dp

+
h
0.11(1)ḡ0 + 0.14(2)ḡ1� (0.04(2)C1 � 0.09(2)C2) fm

�3
i
e fm

(3.18)

Diamagnetic atoms

dHg = �2.1(5) · 10�4
⇥
1.9(1)dn + 0.20(6)dp +

�
0.13+0.5

�0.07 ḡ0 + 0.25+0.89
�0.63 ḡ1

�
e fm

⇤

�0.012(12)de +
⇥
�0.028(6)CS + 6 · 10�3CP + 1.7CT

⇤
⇥ 10�7e fm

dRa = 7.7⇥ 10�4
⇥
(2.5± 7.5)ḡ0 � (65± 40)ḡ1�((1.1± 3.3)C1 � 3.2(21)C2) fm

�3
⇤
e fm

�0.054(2)de +
⇥
0.029CS � 6.4 · 10�3CP � 1.8CT

⇤
· 10�6e fm

dXe = 1.3⇥ 10�5dn � [1.6ḡ0 + 1.7ḡ1]⇥ 10�5 e fm

�1.2(4)⇥ 10�3de +
⇥
�0.006CS + 1.6⇥ 10�3CP + 0.57CT

⇤
⇥ 10�7e fm (3.19)

4 Disentangling the UV sources with EDM measurements

4.1 de and CS

Let us choose HfF+ and ThO to determine de and CS , since EDMs of these molecules are

most accurately measured among paramagnetic systems up to now. Eq. (3.2) and Eq.

(3.3) can be written as

 
!HfF+

!ThO

!
[mrad/s]�1 = MHT

 
de [e cm]�1

CS

!
(4.1)

with

MHT =

 
3.49(14) · 1028 3.20(13) · 108

1.206(49) · 1029 1.816(73) · 109

!
. (4.2)

The determinant of the matrix MHT comes out to be

Det(MHT) = 2.5(4) · 1037 (4.3)

This determinant is non-vanishing with 6 sigma significance, which means that the system

is invertible even with the involved theoretical uncertainties, and we can solve it for (de, CS)

given experimental data on (!HfF+ ,!ThO). Inverting Eq. (4.1), we find

 
de [e cm]�1

CS

!
=

 
7.3(13) · 10�29

�1.29(23) · 10�29

�4.9(9) · 10�9 1.41(25) · 10�9

! 
!HfF+

!ThO

!
[mrad/s]�1 (4.4)

For instance, the currently measured values for !HfF+ and !ThO are
 
!HfF+

!ThO

!
=

 
0.0459(933)

0.510(683)

!
[mrad/s] (4.5)

– 7 –

Improving these uncertainties to be below 20% may render the system invertible.
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Conclusions

• Nuclear, atomic, and molecular permanent EDMs are powerful probes for BSM 
above TeV scale.

• An important question is about the feasibility of experimental determination of 

the origin of the CP violation by EDM measurements:  “The EDM inverse problem”

• In particular we examine whether the origin of the QCD axion VEV can be 

determined by future EDM data. 

• We find that the BSM CPV dominated by gluon or quark CEDMs with/without 

QCD axion can be experimentally distinguished from the 𝜃-dominant CPV by 

characteristic nuclear and atomic EDM profiles.

• Generally future EDM data and improvement of theoretical computation of EDMs 

may disentangle 𝑑), 𝐶))55, 𝑤, and 4 other UV CPV sources (e.g. �̅�, 𝑑1, 𝑑2, I𝑑5).
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𝑑!	~
𝑒𝑚∗

Λ7$
	 �̅� +

𝑒Λ7
4𝜋 𝑤 +

𝑒
4𝜋 	

I𝑑5+ 𝑑5

�̅�-~
4𝜋𝑚∗
Λ7

	 �̅� + 𝑚1 +𝑚2 Λ7𝑤 + Λ7( I𝑑1 + I𝑑2)

�̅�'~
4𝜋(𝑚1 −𝑚2)𝑚∗

Λ7$
	 �̅� + 𝑚1 −𝑚2 Λ7𝑤 + Λ7( I𝑑1 − I𝑑2)

𝐶'	~	𝐶$	~
4𝜋
Λ7

𝑤

Λ! = 4𝜋𝑓"
𝑚∗ ≡ 𝑡𝑟𝑀$

%& %& ≃
𝑚'𝑚(
𝑚' +𝑚(

Back-up: NDA estimations
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RGE effect

γ

qq

γ

qq

Renormalization group evolution
Change of energy scale modifies the coupling constants, mixes operators

Note:  
this analysis is perturbative, large uncertainty due to nonperturbative effect below µ = 1 GeV

1) Example 1: quark EDM

µ = 1 TeV µ = 1 GeV

0.8 x

2) Example 2: Weinberg operator

µ = 1 TeV µ = 1 GeV

g g

g

g g

g

0.33 + 0.14

g

qq -0.07

γ

qq

d

d lnµ
C(µ) = �̂T (↵s)C(µ)

�̂(0) =

0

@
8CF 0 0
8CF 16CF � 4nc 0
0 2nc nc + 2nf + �0

1

A

Anomalous dimension matrix (quark EDM,cEDM, Weinberg operator):

Renormalization group equation:

C : Wilson coefficients of CPV operators

q q

γ
Degrassi et al., JHEP 0511 (2005) 044 
Yang et al., Phys. Lett. B 713 (2012) 473

(Adapted from Nodoka Yamanaka)

The radiatively induced quark-CEDM from the gluon CEDM is important 
(even dominant) for �̅�', while not for 𝑑!	:

Δ 7𝑑& 1	GeV ≃ −𝑟	𝑚&	𝑤(1	GeV)	

�̅�'	~	4𝜋
(𝑚1 −𝑚2)𝑚∗

Λ7$
	 �̅� + 𝑚1 −𝑚2 Λ7𝑤 + Λ7	( I𝑑1−	 I𝑑2)

NDA

𝑟 = 0.41	(Λ/0& = 1 TeV), 0.54 (Λ/0& = 10 TeV) 

𝑑!	~
𝑒𝑚∗

Λ7$
	 �̅� +

𝑒Λ7
4𝜋 𝑤 +

𝑒
4𝜋	

I𝑑5


