Searches for ALP production and decays at kaon factories

Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

<u>Outline</u>

- 1) ALP production in kaon decays: NA62, KOTO, OKA [experimentally: $K^+ \rightarrow \pi^+ X$, $K^+ \rightarrow \pi^+ \pi^0 X_{inv}$, $K^+ \rightarrow \pi^+ X_{ee} X_{ee}$, $K_L \rightarrow \pi^0 X_{inv}$, $K_L \rightarrow X_{\gamma\gamma} X_{\gamma\gamma}$]
- 2) ALP decays with NA62 beam-dump data [experimentally: X→ℓ⁺ℓ⁻, X→hadrons]
- 3) Summary

Rencontres du Vietnam -- The Axion Quest ICISE, Quy Nhon • 9 August 2024

Searches for ALP production in kaon decays

Kaon experiments at CERN

E. Goudzovski / Axion Quest, Quy Nhon, August 2024

NA62 experiment at CERN

NA62 datasets

* Run 1 (2016–18): $N_{K} \sim 10^{13}$ useful K⁺ decays with the main trigger.

- ✓ Sample 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- ✓ Sample 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✓ Sample 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- ✤ Run 2 (2021–): in progress (up to 3×10¹² ppp), approved till 2025.

NA62: K⁺ $\rightarrow \pi^+ \nu \nu$ measurement

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Resolution on m_{miss}^2 : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.

Measured kinematic background suppression:

✓ K⁺→ $\pi^{+}\pi^{0}$: 1×10⁻³; ✓ K⁺→ $\mu^{+}\nu$: 3×10⁻⁴.

Further background suppression:

- PID (calorimeters & RICH):
 μ suppression ~10⁻⁸,
 π efficiency = 64%.
- ✓ Hermetic photon veto: $\pi^{0} \rightarrow \gamma \gamma$ rejection factor = 1.4×10⁻⁸.

5

NA62: search for $K^+ \rightarrow \pi^+ X_{inv}$

- ★ Signal regions R1, R2: search for K⁺→π⁺X (X=invisible), $0 \le m_X \le 110 \text{ MeV/c}^2$ and $154 \le m_X \le 260 \text{ MeV/c}^2$.
 - ✓ Interpretation: dark scalar, QCD axion, ALP, axiflavon.
 - ✓ Main background: $K^+ \rightarrow \pi^+ \nu \nu$.
- ★ The $\pi^+\pi^0$ region: search for π^0 →invisible.
 - ✓ Negligible SM rate $(\pi^0 \rightarrow 4\nu)$.
 - \checkmark Observation = BSM physics.
 - ✓ Reduction of $\pi^0 \rightarrow \gamma \gamma$ background: optimised π^+ momentum range.
 - ✓ Interpretation as $K^+ \rightarrow \pi^+ X$, with m_X between R1 and R2.

NA62: search for $\pi^0 \rightarrow$ invisible

- ★ Rejection of $(K^+ \rightarrow \pi^+ \pi^0(\gamma), \pi^0 \rightarrow \gamma \gamma)$ decays: simulations JHEP 02 (2021) 201 based on single-photon efficiency measurements with $K^+ \rightarrow \pi^+ \pi^0$ decays.
- ♦ Rejection of $\pi^0 \rightarrow \gamma \gamma$ decays for K⁺→ $\pi^+\nu\nu$ analysis: $\epsilon \approx 10^{-8}$.
- ★ For π⁰→invisible search (25<p_π<40 GeV/c): ε = (2.8 + 5.9) × 10⁻⁹

<u>Search for $\pi^0 \rightarrow \text{invisible:}$ </u> (~10% of NA62 Run 1 dataset, 4×10⁹ tagged π^0 mesons)

- $K_{\pi\nu\nu}$ trigger and selection used, with $0.015 < m^2_{miss} < 0.021 \text{ GeV}^2/c^4$.
- ♦ Expected $\pi^0 \rightarrow \gamma \gamma$ events: 10^{+22}_{-8} , events observed: 12.

NA62: $K^+ \rightarrow \pi^+ \gamma \gamma$ and $K^+ \rightarrow \pi^+ X_{\gamma \gamma}$

m_a [MeV/c²]

E. Goudzovski / Axion Quest, Quy Nhon, August 2024

Searches for $K \rightarrow \pi X$: summary

- ✤ NA62 improves on BNL-E949 [PRD79 (2009) 092004] over most of m_x range.
- Interpretation shown here: PBC scenario BC11 (ALP coupling to gluons).
- ↔ For $m_a < 3m_{\pi}$, the dominant decay mode is $a \rightarrow \gamma \gamma$.
- ★ K⁺→ $\pi^+\gamma\gamma$ is sensitive up to ALP lifetime of **3 ns**;
 - $K^+ \rightarrow \pi^+ \nu \nu$ is sensitive to longer lifetimes (ALP becomes invisible).
- Scenario BC10 (ALP coupling to fermions, partial dataset): JHEP 02 (2021) 201. 10
 E. Goudzovski / Axion Quest, Quy Nhon, August 2024

OKA at IHEP-Protvino: $K^+ \rightarrow \pi^+ \pi^0 X_{inv}$

NA62: search for $K^+ \rightarrow \pi^+ X_{ee} X_{ee}$

- ✤ NA62 Run 1, multi-electron trigger, N_K=8.6×10¹¹. PLB846 (2023) 138193
- ✤ Production and prompt decays of axion pairs, K⁺→π⁺aa, a→e⁺e⁻: exclusion of the QCD axion explanation for the "17 MeV anomaly".
 - ✓ Expect BR(K⁺→π⁺aa)>2×10⁻⁸ for m_a=17 MeV.
 [Alves, PRD103 (2021) 055018; Hostert and Pospelov, PRD105 (2022) 015017]
- ✤ Prompt dark cascade involving a dark scalar (S) and dark photons (A'):
 K⁺→π⁺S, S→A'A', A'→e⁺e⁻.
- ★ SM rate: $BR_{SM}(K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-) = (7.2 \pm 0.7) \times 10^{-11}$ [Husek, PRD106 (2022) L071301]

KOTO experiment at J-PARC

Primary goal: search for $K_L \rightarrow \pi^0 v v$ with a sensitivity <10⁻¹⁰

- Primary proton beam: 30 GeV; 60 kW = 6.6×10¹³/5.2 s.
- Secondary K_L beam:
 peak momentum 1.4 GeV/c.
- Beam composition:
 K_L, neutrons, photons.
- Decay region length: ~2 m.
- Hermetic photon detector, including CsI calorimeter.
- Progressive improvements to the setup; upstream
 - K⁺ veto installed in 2021.
- Data taking until 2027.

[PRL 122 (2019) 021802] [PRL 126 (2021) 121801] **1 3**

KOTO: search for $K_L \rightarrow X_{\gamma\gamma} X_{\gamma\gamma}$

- PRL 130 (2023) 111801
 A dedicated trigger line.
- Proton beam power: 51 kW; total exposure: 1.1×10¹⁹ pot.
- ♦ Main background: $K_L \rightarrow 3\pi^0$ with undetected photons or cluster fusion.
- Signal acceptance reduced at $m_X > 150 \text{ MeV/c}^2$ by anti- $K_L \rightarrow 3\pi^0$ selection.
- No data events observed in the signal region.

Searches for ALP decays with NA62 beam-dump data

NA62 in beam-dump mode

E. Goudzovski / Axion Quest, Quy Nhon, August 2024

NA62 in dump mode: $a \rightarrow \ell^+\ell^-$

Event selection:

- ↔ Di-lepton vertex and momentum: ALP trajectory $(a \rightarrow l^+ l^-)$.
- ALP production point: closest approach (ALP trajectory, proton beam axis).
- Signal region (SR): distance of approach (CDA) and Z_{vertex} plane.

Backgrounds:

- Prompt, halo muon interactions in the material upstream decay volume.
 - ✓ Dominant for $a \rightarrow e^+e^-$: $N_{bkg} = 9.4 \times 10^{-3}$; no data events observed.
- Combinatorial, coincidence of unrelated leptons in space and time.

✓ Dominant for $a \rightarrow \mu^+ \mu^-$: N_{bkg}=0.016±0.002; one data event, $m_{\mu\mu}$ =411 MeV.

Results: search for $a \rightarrow \ell^+\ell^-$

NA62 dump mode: a→hadrons

- ↔ ALP production considered: Primakoff mixing with (π^0, η, η') ; $B \rightarrow K^{(*)}a$.
- ALP decay modes considered:

 $a \rightarrow \pi^{+}\pi^{-}\gamma$, $a \rightarrow \pi^{+}\pi^{-}\pi^{0}_{\gamma\gamma}$, $a \rightarrow \pi^{+}\pi^{-}\pi^{0}_{\gamma\gamma}\pi^{0}_{\gamma\gamma}$, $a \rightarrow \pi^{+}\pi^{-}\eta_{\gamma\gamma}$, $a \rightarrow K^{+}K^{-}\pi^{0}_{\gamma\gamma}$.

- * Event selection and signal regions: similar to the $a \rightarrow \ell^+ \ell^-$ case; photons detected by the LKr calorimeter.
- ✤ No data events observed in the control and signal regions.
- Scenario BC11 considered (ALP coupling to gluons).

E. Goudzovski / Axion Quest, Quy Nhon, August 2024

- ✤ Kaon decays: a unique probe for new physics.
 - ✓ Large decay samples are available ($\sim 10^{13}$ events).
 - \checkmark Often simple and clean final states, with low backgrounds.
- A wide programme of hidden-sector searches (including ALP production) in kaon decays is pursued at the kaon factories.
 - ✓ K⁺ decays: NA62, OKA;
 - ✓ K_L decays: KOTO.
- Competitive limits on ALP production have been obtained with a partial NA62 beam-dump dataset.
- NA62 and KOTO are accumulating data: new results with improved sensitivity are expected in future.