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Disclaimer

This talk is very much collider physics oriented
though most principles and arguments do
transpose to other fields and axion quest.

When things are simple, there’s always a way
to make it more complicated ... so take what
you need from this talk and leave the rest.

This is not a talk on ChatGPT, and | have not
used it to write this talk.
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An Introduction
to Machine Learning

a bird’s view. ...
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A Definition

“Giving computers the ability to learn without explicitly programming
them” A. Samuel (1959).

s fitting a straight line machine learning ?
Models that have enough capacity to define its own internal
representation of the data to accomplish a task : learning from data.

In practice : a statistical method that can extract information from the
data, not obviously apparent to an observer.

>Most approach will involve a mathematical model and a cost/
reward function that needs to be optimized.

> The more domain knowledge is incorporated, the better.
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Supervised Learning

- Given a dataset of samples, a subset of features is qualified as
target, and the rest as input

- Find a mapping from input to target

- The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

A

dataset= {(x;, y;)} %
find function f s.t. f(x,)=y,

g0

Temperature
80

70

- Finite set of target values :
> Classification
- Target is a continuous variable :

60

> Regression ! 10

N.B. Weakly supervised, Classification without labels :
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https://arxiv.org/abs/1708.02949

Unsupervised Learning

+ Given a dataset of samples, but there is no subset of feature
that one would like to predict

+ Find mapping of the samples to a lower dimension manifold

- The mapping should generalize to any extension of the given
dataset, provided it is generated from the same mechanism

dataset={(x;)}

find f s.t. f(x)=p, .

- Manifold is a finite set
> Clusterization 0
- Manifold is a lower dimension manifold :
> Dimensionality reduction,
density estimator

-20
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Reinforcement Learning

- Given an environment with multiple states, given a

reward upon action being taken over a state

- Find an action policy to drive the environment toward

maximum cumulative reward

St+1= EnV(St’ at)
r.= Rew(s,,a,)
M(als)= P(A=alS=s)

find T s.t. z r, IS maximum
4

Al for the Axion Quest, J-R Vlimant

—

- _—




Overview

Objective

Data/Env. faneten

Model

Many optimisation methods adapted to the various type of the
dataset, model, objective.

Gradient descent, evolutionary algorithms, ...

@ 9
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(Some) Machine Learning Methods

scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

get

more
data

NOT
WORKING

NO

regression

YES

NO
>50
YES samples
predicting a
category

<100K

samples

YES

YES

NO,

<100K vES
samples
ves \

do you have }

labeled
NO data

few features
should be
important

NOT
WORKING

number of
categories
known

NOT
WORKING

just
looking M.

WORKING

YES

777777 ~ e dimensionality
predicting .
@ reduction

Lot of ML algorithms out there.
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http://scikit-learn.org/stable/tutorial/index.html

Artificial Neural Network

Input Hidder Output
ayer layer layer

h=q¢(Ux+ v)
o(x)=w h+ b

= p(y=11x)= 0(0(x)= 5 %// x
o

[0SS = — Z y:In(p)+ (1= y,)In(1- p,)

Biology inspired analytical model, but not bio-mimetic

Booming in recent decade thanks to large dataset, increased computational
power and theoretical novelties

Origin tied to logistic regression with change of data representation
Parameters usually trained with stochastic gradient descent

11
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Going Deep Learning

Input Hidden Output
layer layer layer

WIDTH

DEPTH

Kolmogorov’'s, and universal approximate theorems push towards wide and
deep densely connected networks.

Depth helps with decomposition. Width helps with approximation.

Still quite empirical field, although theoretical progress are made

PSENLOp S
/,/ RS

12
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Input Cell

O Backfed Input Cell

/\ Noisy Input Cell
. Hidden Cell
. Probablistic Hidden Cell
@ spiking Hidden Cell
. Capsule Cell

. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell
. Gated Memory Cell

" Kernel

O Convolution or Pool

Markov Chain (MC)

Hopfield Network (HN)

Neural Net Architectures

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Perceptron (P)

-

Feed Forward (FF)

Rz

Radial Basis Network (|

o

Recurrent Neural Network (RNN)
)

Y
GREK

Auto Encoder (AE) Variational AE (VAE)

A

Boltzmann Machine (BM)  Restricted BM (RBM)

=Y,
X
/X

Long / Short Term Memory (LSTM)
) [

Denoising AE (DAE)

A
R
AR KARK
AR

Deep Belief Network (DBN)

Deep Convolutional Network (DCN)

Deep Feed Forward (DFF)

RBF)

|><|><|><|><|

Generative Adversarial Network (GAN)

Gated Recurrent Unit (GRU)
) [

9
N

N/

Sparse AE (SAE)

Capsule Network (CN)

IIXIXIXT

)

mied el

Deep Residual Network (DRN

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

|><|><|><|><|

Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

G

Differentiable Neural Computer (DNC)

e

Neural Turing Machine (NTM)

Attention Network (AN)

Kohonen Network (KN) @

Many architectures and many more : graph network, transformer, ...
Plasticity and induction bias with new generation of architecture.
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http://www.asimovinstitute.org/neural-network-zoo

Generative Models

Conditioning

Hra-
Fpy X
}

Machine Learning model able to learn the underlying data
probability distribution function from the training data.

And produce stochastic output, as if they were new
samples from the original dataset.

Extendable to data completion.
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NLP — LLM

Natural Language Processing (NLP) has been one of the main driver of
deep learning since the beginning.

Several leaps were made in the field over the last decades (RNN, LSTM,
Attention, ...) and more recently thanks to Transformer-based models

and generative pre-trained transformers (GPT).

Entering the era of large language Models LLM that have super-human
performance.

e.g. ChatGPT : a model is able to converse in many languages, including
software language i.e writing code.

15
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Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
L

Explain reinforcement

learning to a 6 year old.

;

o)

4

We give treats and

punishments to teach...

Chat-GPT

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

]l N

L
Explain reinforcement
learning to a 6 year old.

(A o

In reinforcement Explain rewards...
learning, the
agentis...

o O

In machine We give treats and
learning... punishments to
teach...

N2
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A=

Write a story
about otters.

Pre-trained to complete sentences over the |OT.

N.B. the need for human Al trainers

Al for the Axion Quest, J-R Vlimant
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https://openai.com/index/chatgpt/

Spiking Neural Network
BT

Not well established (here, genetic

I
Back-propagation algorithms) Partially solved L —
Images/Arrays of values Spikes H —
m Large (many layers, many neurons Relatively small (fewer neurons and WMMMMM*
and synapses per layer) sparser synaptic connections)

| BALILALHLL
Good for spatial Good for temporal
Well understood and state-of-the-art Not well understood

Closer to the actual biological brain.
Good for temporal data.
Hardware implementation with low power consumption.
Trained using evolutionary algorithms, recent work on gradient-based.
Python libraries available : , , , -
For ref

¢ 17
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https://lava-nc.org/lava-lib-dl/slayer/
https://snntorch.readthedocs.io/
https://spikingjelly.readthedocs.io/
https://norse.github.io/norse
https://iconsneuromorphic.cc/

Combined SNR

Single Spectrum SNR (offset)

80

60

40

For example

ANV A AR '
Ao Background-Subtracted
e A T, 4 REW Spectra

A

R e N
AN M M
PRELIMINARY a

f
Synthetic DFSZ Synthetic KSVZ

% Siqnlal } Sliqnal |

Optimally Filtered
Combined Spectra

. SIMULATED SIGNALS _
NOT A REAL AXION

1 | Il

647.99 648 648.01
Frequency (MHz)

Search for the QCD Axion with ADMX [
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https://indico.in2p3.fr/event/33124/contributions/141855

Quantum Machine Learning

quantum circuit

Objective based on quantum measurement.
Parameters of a quantum circuits as weights.
Trainable circuits for quantum machine learning.

Quantum Machine Learning
Quantum Machine Learning in High Energy Physics
Quantum Machine Learning Models are Kernel Methods

Good for generative model or learning from
quantum data.

¢ 19
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https://www.ibm.com/quantum-computing/
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/2005.08582
https://arxiv.org/abs/2101.11020

Artificial Intelligence

Science that aims at exhibiting “intelligence”, i.e : capacity to
perceive information, transform in knowledge, apply within an
environment.

Narrow Al . Al that matches human capability for a specific task.

Artificial General Intelligence (AGI) : Al that matches human
capabilities across a wide range of tasks.

Artificial Super Intelligence (ASI) : Al with an intellectual scope beyond
numan intelligence.

nvolves creativity, making analogies, extrapolating off domain, ...
An introspective study on how “human intelligence” is acquired.

Still very much used as hype ...

20
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Take home message :

Deep learning models have lots of capacity
and demonstrate great performance.

Deep learning is still very much empirical.
AGI/ has still to be achieved.

Al for the Axion Quest, J-R Vlimant
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Motivations in a Nutshell

Experience with machine learning can significantly open career horizons.
Machine learning can provide ways to learn to control environments.
Physics knowledge can be extracted from data.

Physics principles can be used to boost model performances.
Deep learning can learn from very complex data.

Model can be evaluated quite efficiently.

Spiking models use low power.

23
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Possible Utilisation

Accuracy Speed

Interpretable

> Fast surrogate models (trigger, simulation, etc) ; even better if more accurate.
> More accurate than existing algorithms (tagging, regression, etc) ; even better if faster.
> Model performing otherwise cumbersome tasks (operations, etc)

24
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Take home messaqge :

Machine Learning is a widely recognised and
used technology in industry

Deep Learning has the potential of helping
Science to make progress

Neural Networks could help with the computing
efficiency of Science

Al for the Axion Quest, J-R Vlimant
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Deep Learning
In Particle Physics

how far have we gone now ...
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Growing Literature

Date of paper

1972 2024

Community-based up to date listing of references

Al for the Axion Quest, J-R Vlimant

27


https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature?q=machine%20learning%20or%20deep%20learning

Historical View

The AIHENP/ACAT series pioneered in

showcasing Al in High Energy and Nuclear Past Workshops
physics. T

1 AIHENP 1990 Lyon (France) March 19-24 1990
2 AIHENP 1992 La Londe Les Maures (France) Jan. 13-18 1992
a nd DS@ H E P Se rles Iead US Out Of 3 AIHENP 1993 Oberammergau (Germany) Oct. 4-8 1993
. 4 AIHENP 1995 Pisa (ltaly) April 3-8 1995
a n AI WI nte r. 5 AIHENP 1996 Lausanne (EPFL-UNIL) (Switzerland) Sept. 2-6 1996
6 AIHENP 1999 Heraklion (Crete, Greece) April 12-16, 1999
M any wo rkshOp and conference series NOW eXiSt 7 AcAtz00  chicago FERMILAB) (UsA)r Oct. 16-20, 2000
] ] ] 8 ACAT2002  Moscow (MSU)(Russia)c June 24-28, 2002
for Al/Deep Learning in science and HEP : , 9 ACATZ00 Tsukuba (KEK) (apan)e
10 ACAT 2005 Zeuthen (DESY) (Germany)c? May 22-27, 2005
y 11  ACAT 2007 Amsterdam (NIKHEF) (The Netherlands) April 23-27, 2007
12 ACAT 2008 Erice (Italy)c? Nov. 3-7, 2008
7 13 ACAT 2010  Jaipur (India)c7 Feb. 22-27, 2010
14 ACAT 2011  Uxbridge (UK) 7 Sept. 5-9, 2011
’ ’ 15 ACAT2013  Beiing (China)cr May 16-21 2013
. " " 16 ACAT 2014 Prague (Czech Republic) 7 Sept. 1-5, 2014
Omnipresent in main conferences and o7 AT 2| s s
k h 18 ACAT 2017  Seattle (USA)wz Aug. 21-25, 2017
WO r S O pS ) 19 ACAT 2019 Saas Fee (Switzerland) 7 Mar. 11-15, 2019
. . . 20 ACAT 2021 Daejeon (South Korea) 7 Nov. 29 - Dec 3, 20:
M a n y A I / D L to p I Ca I WO rkS h O pS W I t h I n th e 21 ACAT 2022 Ban(ltaly)gx Oct. 24-28, 2022

community.
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https://twiki.cern.ch/twiki/bin/view/ACAT/PastWorkshops
https://indico.cern.ch/e/DataScienceLHC2015
https://indico.cern.ch/event/1330797/
https://ml4physicalsciences.github.io/
https://indico.cern.ch/event/1387540/
https://indico.cern.ch/event/1386125/
https://indico.cern.ch/event/1386125/
https://conferences.weizmann.ac.il/SRitp/Aug2022/hammers-nails-2022-0

Specific Elements of
Machine Learning

Al for the Axion Quest, J-R Vlimant
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Specific Elements of ML in a Nutshell

Lots of labelled simulated data can be obtained from simulator.
Various level of data representation = image, sequence, graphs.
Various symmetries at play in the data = equivariant models.

Need as least as possible biased models = decorrelation methods.
Uncertainties need to be taken into account = uncertainty aware models.
Data and simulation do not necessarily agree => domain adaptation.
Physicist need to understand the models => model interpretation.

30
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Applications of
Machine Learning

a quick 41 view ...

Al for the Axion Quest, J-R Vlimant
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Producing the Data

* Machine learning can be used
to tune devices, control
beams, perform analysis on
accelerator parameters, etc.

 Already successfully deployed
on accelerator facilities.

* More promising R&D to
Increase beam time.

A. Scheinker, C. Emma, A.L. Edelen, S. Gessner

Opportunities in Machine Learning for Particle Accelerators

Machine learning for design optimization of storage ring nonlinear dynamics

Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report
Machine learning for beam dynamics studies at the CERN Large Hadron Collider
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https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461

Triggering and Scouting

Vertex reconstruction at L1

track features (~10)

PT) X5 0. CMS Phase-2 Simulation 14TeV, 200PU
0.
(&)
( v g
histogram weight ‘%0'7
®
: : i —= VBFH- Inv.
weighted histogram of 2, %) -+ VBFH-bb
(~256 bins) e — HH-4b
04 E
convolution layers ¥
neural * T et
0.2 P
network dense layers P A
* latent 0.1 >
PV | | features 00
0 50 100 150 200 250 300
* Rate [kHz]
convolutions
\ Anomaly detection at L1
P(track|z}VY)

Phase-2 upgrade of the CMS L1-Trigger

 Trigger benefit from fast

reconstruction algorithms

L1 needs FPGA
Implementation. hls4mi-
enabled algorithms.

Quality of selection increases
with refinement of object
reconstruction

Having the best
reconstruction is particularly
iImportant in scouting

Balance between speed and
accuracy

34

Al for the Axion Quest, J-R Vlimant


https://cds.cern.ch/record/2714892

Cleaning Data

Fully connected
—
Fully connected

= el = » Data quality is a person power
i @* " @ intensive task, and crucial for
LN =i s e {1y swift delivery of Physics

4@46x12 feature B
4@46x12 feature

* Machine learning can help
with automation.

CMS Run: 272011, W: 1.0, St: 1.0, Sec: 6.0
“ T T[T T T T [ T T T T [ T T T T [ T T T T[T

=
(=)
T
|

e
foe) E]
c
o 2
T 7]
- -
@
=]
— c
P 2
y i =
: { O
1
o

Learning from operators,
i pucoms | reducing workload.

= SNN, AUC: 0.993

o
(=2
T

04 Variance, AUC: 0.977 | ]

oy e Continued R&D and
e Sobel, AU;: 0.9:}6 . .

oot L osmn experiment adoption.

0.00 0.05 0.10 0.15 0.20 0.25

Fall-out (1-TNR)

A.A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth

Towards automation of data quality system for CERN CMS experiment

LHCb data quality monitoring

Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider

Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment
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https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1

Compressing Data

Rich literature on data
| compression of image with
: | neural network.

101 1041 10*

0 20000 40000 60000 —200 -100 0 2000 4000 6000

” oo o0 Make use of abstract semantic
| space for image compression.

0.5 -3 0 -2 0 2
ActiveArea ActiveAreadvec _eta ActiveAreadvec_phi

0] 10

10'{ 10! 10 | 100 o ': .

025 050 0.75 00 01 02 03 -100 -50 0 50 101:, ° z o 25 oo Is l o5 00 05 10 ° Image CompreSSIOn Can SUffer

ActiveAreadvec_pt ActiveAreadvec_m Timing - DetectorEta 0T eMFrac - HECFrac .

s some loss of resolution.
“ 1 BN Input 10 | 10° B Input . .
Output ouput  * Saving on disk/tape cost.
0.0 05 1.0 0.0 0.5 1.0 ? 0

OotFracClusters5 OotFracClusters10 . ché’ua..t_y_ E oo LArOL?;r’IIty - Potential in Scouting Strategies.

R&D needed to reach the
necessary level of fidelity.

Deep Auto-Encoders for compression in HEP

36
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http://lup.lub.lu.se/student-papers/record/9004751

=g=g=

Visualization / Monitoring

L

Analytics
Ele R

Data sources

Logging f-; g ,

Systems,

Data Providers
components

services

Actions/
alerts

Actions

i ® s
© o B2

Operational Intelligence

Managing Data

-

( Cache \

System

Request Client

Addition

Agent {Action}~%" cache

Memory
I Reward

%_J

|Cache Type’Throughput Cost|Rcad on hit ratio Band sat.|CPU Eﬂ'.]

|SCDL y 79.43%|50.68% | 21.22%|  58.94%|  58.75%|
|LFU | 65.01%/104.73%| 33.29%| 51.00%| 60.92%|
|Size Big | 49.02%|111.73%| 28.55%|  54.40%|  60.41%)|
|LRU y 47.15%112.84%| 27.64%|  54.93%|  59.90%|
Size Small | 46.71%|113.01%| 27.39%|  55.01%|  59.73%|

, In proceedings

Advertising:
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Caching suggestions using Reinforcement Learning

The LHC-grid is key to
success of the LHC
experiments.

Complex ecosystem with
dedicated operation teams.

Person power demanding,
and inefficient in some corner
of the phase space.

Potential for Al-aided
operation.

Lots of modeling and control
challenges.

R&D to increase operation
efficiency.


http://cds.cern.ch/record/2709338/
https://lod2020.icas.xyz/program/
https://www.frontiersin.org/research-topics/17863

Al for the Axion Quest, J-R Vlimant



Reconstruction - Simulation ~ ldentity

Analysis

Particles

Simulation Reconstruction
Comparison
- i > <>

Track
candidates

its Track

segments

Information

Summable digits

Reconstructed

Digits .
points

>

Rawidata Processing

Simulation aims at predicting the outcome of collisions.
Reconstruction aims at inverting it.
Multiple ways to connect intermediate steps with deep learning.

)
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Data

[ DL

Lx, P, ETA,
nTracks

|

reprocessing

Quantile Transformer
(Norm

al)

DLLx, P, ETA,
nTracks

Latent space

{ Normal, 64 ]

( Ger
Crit Dense, 128, RelL.U
Dense, 128, Rel.U
Dense, 128, RelL.U
Dense, 128, RelL.U x10
x10
Dense, 128, ReLU
Dense, 128, ReLU
‘ ‘ Dense, 5, Linear
Dense, 256, Linear
| | L )

0035 LHCb preliminary
35

L

Cramér GAN Loss

Simulating Data

50
RichDLLk

50
RichDLLk
LHCb preliminary

LHCb preliminary

50
RichDLLk RichDLLk RichDLLk

Generative Adversarial Networks for LHCb Fast Simulation

More of the relevant works at:

Al for the Axion Quest, J-R Vlimant

Fully detailed simulation is
computing intensive.

Fast and approximate
simulators already in operation.

Applicable at many levels :

sampling, generator, detector
model, analysis variable, etc

Generative models can provide
multiple 1000x speed-up.

Careful study of statistical power
of learned models over training
samples.

Many R&D, experiment adoption
starting.


https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762

Suiting Models

\ [ . . ) » \
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" ¥ '.\ X
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. @/
70 75 80 85 9 75 80 85 90 95 e
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Learn the parton=>detector function instead of
generating samples from vacuum.
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https://arxiv.org/abs/2010.01835
https://arxiv.org/abs/2006.06685

Statistical Power
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d batch B

-
w
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Generative adversarial network may help producing samples with
higher statistical power than the one used for training.
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https://arxiv.org/abs/2008.06545
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Reconstructing Data
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Event reconstruction/tagging is
pattern recognition to a large
extend. Advanced machine
learning techniques can help.

Learn from the simulation, and/or
data.

Learn from existing “slow
reconstruction” or simulation
ground truth.

Automatically adapt algorithm to
new detector design.

Image base methods evolving
towards graph-based methods.

* Accelerating R&D to exploit full

More of the relevant works at:
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https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149

For example

drift time
(depth)

e Signal detection
» Light signal (S1)
» Charge signal (S2)
e Energy reconstruction
e 3D position reconstruction

Search for Solar Axions and ALP Dark Matter with XENONNT [
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https://indico.in2p3.fr/event/33124/contributions/141961

Track Seed Finding in Jets

Pivel Window, layef 4

13 TeV
o 3 Tracking Efficienc
imubation Préé™ ol Window, l2yer g y
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Predict tracklets parameters from raw pixels using CNN
Approaching the maximum reachable performance
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https://indico.cern.ch/event/742793/contributions/3274301/

For example

The Josephson Parametric Amplifier

Caglar Kutlu e
arXiv:2305.088

= 2D jPA Par amap (f;mssive’ PPU""P)
=  Gain contour

Lower pump power — Lower added noise

Get the lowest P,
target gain (typically 20 dB)

» Every 0.2 ~ 0.5 MHz, interpolated for each

tuning step

Pump Power
n

in the contour of given

w
o

N
w

N
o

Ll
(7
Gain [dB]
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-0.8 -0.4 0.0 0.4 0.8
Detuning
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‘@ 48
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https://indico.in2p3.fr/event/33124/contributions/141870

J t I |
T T T T E
& — ParticleNet (AUC = 0.9979) 1
ParticleNeXt (extended dataset) (AUC = 0.9986) 1
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e conhca
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2, = Z}(WU 'Qz]) 1055 03 07 06 08 1.0
’ Signal efficiency T o)
T
The Lund jet plane provides an efficient description of the radiation patterns within a jet )
(b) (b) =
=) (a) (a) /C) E Primary Lund-plane regions
- (c) 3 (
f - £ (@)
E = RN )
E % O:(" feauvfes —
o~ % Ky o, Lund tree /
g (b) ®) > o g =T o 54)+ BN + e
E ("O/// ©® Linear (Cy) + BN + ReLU
% (c) O@@» <~ Linear (C,) : BN + ReLU gecli
=) - % ed
=} ¢ ’%\ non-pert. (small k¢)
[ Aggregation |
Inl/A & In1/A In(1/8) ﬁ&:
‘\\7 RelU 5 Softmax
Jet tagging in the Lund plane, N .

State of art graph based models are now supplanted by transformer based models.

Still a very rich field, in particular in developing inductive bias in the model
(symmetry, invariance, ... ).

Kinematic regression, substructure assignment, ... also possible.
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https://arxiv.org/abs/2012.08526
https://indico.cern.ch/event/980214/contributions/4413544/

C-jet rejection

c jet rejection

Jet Tagging
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Flavor-tagging and flavour-rejection
has improved significantly over the
last years thanks to deep learning.

Boosting analysis efficiency and
significance.

¢ 50
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https://indico.cern.ch/event/1291157/contributions/5958406/
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A deep neural network for simultaneous estimation of b jet
energy and resolution

* Energy regression is the most
obvious use case.

* Learning calibrating models
from simulation and data.

« Parametrisation of scale
factors using neural networks.

* Reducing data/simulation
dependency using domain
adaptation.

 Continued R&D
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https://arxiv.org/abs/1912.06046

w

N

Crystal n index

di-photon Mass Regression

CMS simuiation m, = 0.4 GeV ; , CMS Simulation A— vy x107
e < 1 N e
>
= 0 Q’
' 10 S S 25
4 & . E
S RESNET for mass regression 0.8 2
s lﬁ +
6 . 1 domain continuation a low mass 0.6 Wt 1.5
0.4 {1
8 1
| 10 0.2F 0.5
0 M PR (TS VR SR SN S S T | e O " = - - @ - - 0
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Crystal ¢ index m, [GeV]

Learn the a/di-photon mass from the energy deposition in ECAL
RESNET-based model to process ECAL image
Unprecedented reach at low mass

@ 52
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https://arxiv.org/abs/1512.03385
https://doi.org/10.1103/PhysRevD.108.052002

For example

x[m] DarkQuest Spectrometer: Top view (Bend plane) 2[m]

I [ I
<decay region |

0 5 20 25

koft ‘r e o v

ALP searches with fixed target experiments |
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https://indico.in2p3.fr/event/33124/contributions/141871

Anomaly Search

Al for the Axion Quest, J-R Vlimant
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The Sea Beyond Standard Model

Slide: A. Wulzner

HEP yesterday HEP today

_SUSY, etc.

W boson
“Almost” Simple H+ “Very” Composite H1
Focus on few sharply-defined Huge set of alternatives

alternative models (e.g., the Higgs) Case-by-case optimisation unfeasible

Case-by-case design of optimal test | The right H4 likely not yet formulated

@ 55
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http://www.weizmann.ac.il/conferences/SRitp/Aug2019/

Detecting New Data

low dimensional
representation

o dE N . . .
QN Sl dilad > * Machine learning since long
| ’I deployed in the trigger for
\® selected signatures.
o = wewmonn | [ * Further potential for
pore 10 e background trigger rate
- 10 ﬁ%ﬁnﬂaﬂgo o = e reduction.
. 5 o | » Emerging opportunity for
triggering on unknown
e signatures : “a la Hotline”.
101 10 10 Loigreco 10 10 10° 10 102DKL 10° . MOre prom|s|ng R&D and

Use of variational auto-encoders directly on data to marginalize experlment adoptlon.

outlier events, for anomalous event hotline operation.
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https://doi.org/10.1007/JHEP05(2019)036

"One-Sided” Hypothesis Testing

Rigor in calibrating the rate of
anomaly is HEP specific
(Anomaly detection is not).

Some methods can serve as a
hotline: notification of odd
signals.

Some methods can serve Iin
analysis: calibrated rate of
novelty.

Also of great importance in data
quality monitoring/certification.

Individual Approaches

LHC Olympics 2020

3 Unsupervised

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9

Anomalous Jet Identification via Variational Recurrent Neural Network
Anomaly Detection with Density Estimation

BuHuLaSpa: Bump Hunting in Latent Space

GAN-AE and BumpHunter

Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

Latent Dirichlet Allocation

Particle Graph Autoencoders

Regularized Likelihoods

UCluster: Unsupervised Clustering

4 Weakly Supervised

4.1
4.2

4.3
4.4
4.5

CWoLa Hunting

CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

Tag N’ Train

Simulation Assisted Likelihood-free Anomaly Detection

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1
5.2
5.3

5.4

Deep Ensemble Anomaly Detection

Factorized Topic Modeling

QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
Simple Supervised learning with LSTM layers

S7

Al for the Axion Quest, J-R Vlimant


https://arxiv.org/abs/2101.08320

Data Analysis
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58



Multi-category Classification
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Slide M. Rieger

Search for ttH production in the H-to-bb decay channel

with leptonic tt decays

Data / Pred.

CMS Preliminary 35.9 fb' (13 TeV)
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1

Regular analysis fit categories sub-divided using
DNN output nodes for added sensitivity.
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https://cds.cern.ch/record/2308267

Analysing Data

5 SignalRegion
EEl Background [ ]
4 - Signal
-3
E
x
<2
(]
1
910 1 2 3 4 s
l0g(pbackgrounda(x|m))
(]
Signal Region, Shifted Dataset Signal Region, Shifted Dataset
— 105
%10 ! :“L —— Supervised ! —— Supervised
o 41 b CWola (S vs. B) €20 'i. CWola (S vs. B)
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=~ | | ,,'
z | \\ —— ANODE § 15 |4 II",' L‘\ —— ANODE
a 10°; a f Mgty e Random
g | E
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Signal Efficiency (True Positive Rate) Signal Efficiency (True Positive Rate)
Use of masked autoregressive density estimator with normalizing o

flow as model-agnostic signal enhancement mechanism.

More of the relevant works at:
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Machine learning has long
infiltrated analysis for signal/bkg
classification.

Increasing number of analysis
with more complex DNN.

Application to signal
categorization, bkg modeling,
Kinematics reconstruction, decay
product assignment, object
identification, ...

Breadth of new model agnostic
methods for NP searches.

Continued R&D and experiment
adoption initiated.


https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/

2D histogram

Theory Behind the Data

,,,,,,,,

Constraining EFT with ML

/ RNN

probprog/pyprob

~Mx

Tt

V) 1om

%Iator C++
V1 K [ N

Inference

Approximate Bayesian Computation Approximate Bayesian Computation
with Monte Carlo sampling

Probabilistic Programming

with learned summary statistics with Monte Carlo sampling

trained with augmented data

Probabilistic Programming
with Inference Compilation

Amortized surrogates

The frontiers of simulation-based inference

Al for the Axion Quest, J-R Vlimant

Hypothesis testing is the core
of HEP analysis.

Intractable likelihood hinders
solving the inverse problem.

Going beyond the standard
approach using machine
learning and additional
information from the simulator.

More precise evaluation of the
priors on theory's parameters.

May involve probabilistic
programming instrumentation
of HEP simulator.

R&D to bring this in the
experiment.
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https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013

Expected Parameter Values

: - - /.
Regression by neural network = h[P (@)l (@)

! | !
Lattice QCD Parameters of : : :

gauge field lattice action ~  _—____ e R -Il ———————————— ! |

— I | | I

~107-107 real , . Few real | | | | |

numbers KRN numbers P, (2)—=P,, (%) e ! I(x) ! I>(x) !

R oo f A i N
NEURAL NETWORK : passive update [ : frozen : frozen :
- : L= (o) : e | : |
. iT;+_____: _____ e \_\__i ______ < i ______ < L
T . T \ . : . |
. . | |
. . \ . .
Slide Phiala Shanahan ) (AP (5 N7 (e ()= .
P, (2)=P(2)U,(z)U,/ (x) U, (r)= U,(z)

Lattice QCD is computationally expensive.
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https://doi.org/10.1103/PhysRevLett.125.121601

For example

Conclusions
e Significant progress.
¢ |ssues of signal (statistics), N« contribution, and renormalization remain
e Gradient flow scheme is, so far, best for renormalization

e quark-EDM: Lattice QCD has provided results with < 5% uncertainty

e O-term: Significant Progress. No reliable estimates yet

e Statistics
®* Does N provide leading excited-state contamination?

e quark chromo-EDM: Signal in the 3 methods being used

® Renormalization and mixing (Working on gradient flow scheme)
®* Does N provide leading excited-state contamination?

e Weinberg GGG Operator has signal
® Address the mixing with ©-term in gradient flow scheme

e Four-quark operators: No calculations yet

Need 10-100 X Larger Computational Resources

Contributions of CP violating interactions to the neutron EDM from lattice QCD |
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https://indico.in2p3.fr/event/33124/contributions/141908

Take home message :

Particle Physics offers a unique playground
for machine learning.

Rapid growth of deep learning applications
in HEP.

Proofs of concept increasingly turning into
production.

Al for the Axion Quest, J-R Vlimant
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Step Back on Artificial Intelligence

Developing Al requires an introspection on how intelligence is acquired,
how new knowledge is created, is creation/innovation an extrapolation
from the world of knowledge, is individual intelligence only based on
experience and observation, ... = philosophical considerations.

Can this process be automatised, how much bias is there in Al-acquired
knowledge feeding back the world of knowledge, would an Al exhibit the
same bad traits of humanity, ... = ethical considerations.

How would an Al that develop a theory, makes a thought experiment, an

experiment, an observation and confirm the theory look like. Would an Al

develop new technologies and send Al to the moon. Would an Al devise
a way to share resources, ... = behavioural considerations.

Not delving into these considerations here, but they are key elements to
the future of Al.

66
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Al Scientist

“Use DL" is not a good objective for applying deep

learning. One needs to have a concrete objective

function and data/simulator that contains enough
information to realise the objective.

Trivial for simple objectives, might not be so trivial in
more complex situations.

Deep learning is relevant when dealing with large
sample datasets, complex simulation or data extraction
algorithms, ...

Some data analysis method might not be considered
because too computational expensive ; however deep
learning might make them tractable.

A scientist should be efficient in all the tasks towards
advancing knowledge ; "automate all the things”.

Al for the Axion Quest, J-R Vlimant
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http://www.idsia.ch/~juergen

Experimental Design

Neutron Tomography: optimization

e Results for L give the same result as traditional studies from 10.1088/1748-0221/13/10/P10006

Neutron Tomography

e GEANT4 model of a10 x 10c¢m? O-PPAC (Parallel-Plate Avalanche Counter with Optical Readout) from Neutron Insights - .
e Remarkably stable regardless of initial configuration

o Parallel electrodes with 3mm gap filled with low-pressure scintillating gas mixture (CF4) with high electroluminescent light yield . ; . ;
e MSc thesis of Maria Pereira Martinez

o Readout via array of small silicon photomultipliers SiPMs o P X tion (w/ M.PM., Xabier Cid Vidal)
aper in preparation (w/ M.PM., Xabier Cid Vida

e Parametric neural network surrogate of the GEANT4 simulation

o p: higher pressure — higher electroluminescence yield (up to a threshold), but larger voltage (energy expenditure)

o L: collimator length: tradeoff between accurate light localization (high L) and higher photon statistics (low L)

0.0309

SiPM array
Collimator length (L) 0300
i i . 0.0299
i . Collimator width (w) Collimators 10295
typically of 1 mm
0.029( 3.0290
4/\ B E 0.0283 025 E
y coordinate (10 cm) u ")
8 0.028 50280 &
- o |
,,,,,,,,,,,,,,,,,,,,,,,,,, 0.0274 1.0275
. 1.0270
Pitch (p = w+A) PPAC effective area 0.027( é\'
» Jozes &
! 0.026! S ﬁ R
X coordinate (10 cm) 10 20 30 40 50 \S\}‘O 50 40 30 20 10 0 Qo’
A,
Collimator Length [mm] Q/,\ Pressure [Torr]
o/\
AV tial confiourati v P r—
« Initial configurations « Initial configurations
® Minimum ® Minimum

Differentiable programming implementation of
detector => measurement pipeline.

Optimisation of detector layout with gradient descent
with respect to measurements.

More efficient experiment R&D.
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https://mode-collaboration.github.io/
https://indico.cern.ch/event/1291157/contributions/5892384/

For example

i) Multi-cell (pizza)

Higher Large Larger Various
. frequency T . volume volume advantages
- O =
Single Single Multiple Multiple-cell cavity Multiple-cell cavity
large cavity small cavity small cavities (pizza cavity) with a gap

Cavity haloscopes for high-frequency axion search at IBS-CAPP |

Al for the Axion Quest, J-R Vlimant
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https://indico.in2p3.fr/event/33124/contributions/141863

Apparatus Control

... This algorithm is lightweight enough to fit on a low- Badger GUI
resource FPGA and perform inference with a latency

of 175ns and pipeline interval of 5 ns with > 0.99 gate t
fidelity. In the long term, such an accelerator could be

used near quantum computing hardware where

traditional computers cannot operate, enabling

gquantum control at a reasonable cost at low Text inout
latencies without incurring large data bandwidths P python AP
outside of the cryogenic environment. -

X pt( L)

# take steps and view data
fcr in range(10):

R R in ra
Conventional p
Quantum.Control ” Optimal a
Algorithm L S|mulat|on / \ y

Control System

e Wy
W
www

N

Machine
Learning Model

Approx.
Optimal a

Neural network accelerator for quantum control

Progressing in achieving apparatus control : extend to accelerator,
detector, DAQ, computing, networking, storage,

Potential for on-chip sensor control.

Person, time and power efficient operation.
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https://doi.org/10.1109/QCS56647.2022.00010
https://doi.org/10.18429/JACoW-IPAC2024-THPG85

For example

To all
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https://indico.in2p3.fr/event/33124/contributions/141870

Analysis Description Languages

;%!f ChatGPT, write me a paper...

N g\
@{ ¢ ChatGPT 3.5

& ~ ChatGPT
Object selection in this analysis begins with the identification of muons satisfying a
transverse momentum (pr) greater than 20 GeV and an absolute pseudorapidity (7)) less
than 2.4. Similarly, electrons are chosen based on a pr threshold greater than 20 GeV
and |n| less than 2.5. A unified set of leptons is then formed by combining the selected

electrons and muons.

Jets are selected with a pr threshold of 30 GeV and |7| less than 2.4. To ensure

separation from leptons, any jet within a distance dR < 0.4 from a lepton is excluded.

Two key event variables are defined: the scalar sum of jet py (HT) and the transverse

* mass of the leading lepton and missing transverse energy (MET) (MTI). HT is calculated
as the sum of the transverse momenta (pr) for all selected jets. MTl is computed as the
square root of (2 - pr(lepton) - MET - (1 — cos(¢(MET) — ¢(lepton)))), where
¢ represents the azimuthal angle.

Event selection is performed across three regions. The baseline region requires a
minimum of 2 selected jets, a threshold on HT (HT' > 200), and a condition on the ratio
of MET to HT(MET /HT < 1). The signal region builds upon the baseline criteria but
excludes events with any selected leptons and introduces an additional requirement on
the azimuthal separation between MET and the leading jet (dphi(MET, jet) > 0.5).

The control region, similar to the baseline, includes events with exactly one selected

ChatGPT 4 is pretty good in writing ADL
files from a given text.

lepton and imposes a constraint on the transverse mass (M711 < 120).

These selection criteria aim to isolate events with specific object characteristics and

Immediate use for education purposes.

event topologies, enabling a detailed exploration of the physics processes under

investigation.

Community-wide effort to define universal analysis description language.
Still means writing a language and interpreter ...

Should GPT-like models be the Human = Code interpreter?

@ 72
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https://indico.cern.ch/event/1370326/#4-the-analysis-description-lan

Code Generation

Simple to start E— g
auth-get-sso-cookie/’ 2 T~ g Z’SBERT.net

How do | calculate the z0 of a track with respect to a vertex?

You can calculate the z0 of a track with respect to a vertex by using the following code snippet:

XAOD::TrackParticle trk;
XAOD::Vertex vtx;
float delta_z0 = fabs(trk.z0() + trk.vz() - vtx->z());

where trk.vz() represents the point of reference for the z0 calculation (in this case, the beamspot position along the z axis).

DM GF Name credit: Sam Van Stroud

A
Thanks to M. Hart, N. Pond, J. Barr, A. Vaitkus for the gentle ribbing
chATLAS An Al Assi 6

In our field (and likely in others), writing code is a skill getting scarce.
Learning a language is mostly done through “speaking and listening”
Al-generated code anyways needs reviewing and testing.

Conversing with an “Al writing code” is actually a good way to teach
people good coding skills and rules.

@ 73
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https://indico.cern.ch/event/1395528/contributions/5877957

Documentation-bot
AccGPT: Examples 3 — Coding Example

The example implementation of an optimization problem in COl is as follows:

“python

import numpy as np

from scipy.optimize import minimize
from cernmliimport coi

Could you give an example implementation of an optimization problem in COI?

class AwakeElectronBeamSteering(coi.SingleOptimizable):

def init_ (self):
- self.corrector_scale =1

. def compute_single_objective(self, params):
What is the COI? s = np.sqrt{np.mean(np.abs(self.corrector_scale * params)))
return rms

" 5 o I def compute_single_objective_function(self,fparams):
COl stands for "Common Optimization Interfaces”. It is a refurn -np.méean(np.abs(self.correcfor_scale * params))

project that aims to bring numerical optimization, machine def get_initial_params(self, cycle_time):

learning, and reinforcement learning to the operation of the o retam _np'zerostself'correCtor‘scale'Shape)
CERN accelerator complex. The COIl provides common def getob‘eCUVefeff&%tlvperfé??r?ﬁééglgéteermg"
interfaces that make it possible to use numerical coiregister("awake_electron_beam_steering", AwakeElectronBeamSteering)
optimization and reinforcement learning on the same

optimization problems. The cernml-coi-utils package

# Run the optimization problem )
coi.make("awake_electron_beam_steering")

coi.run()
provides utility functions and classes that make it easier to
i i This impl tati fi timizati lem for elect teering i rticl lerator. Th
work with the COIl, encapsulating common use cases to save This implementation defines an gggg‘ggﬁ;g?&;g?ﬂ;}n&fiﬁ gﬁg 60pql%?§£?)lz.§§;lg% \I/rérariggs it'e accelerator. The
time and prevent bugs. . . function’, "get_initial_params’, and
single_objective’ method calculates the root mean
For such tasks we aim to implement - je@““‘]*%””d"“%"' mahod SacRioe (o
. . arams’ méthod returns the initial parameters for the
a dedicated COdlng LLM. method returns the name of the o%jective function.
i . Further reading:
Further readings: https://acc-py.web.cern.ch/gitlab/geoff/cernml-coi/docs/stable/tutorials/implement-singleoptimizable.html

https://acc-py.web.cern.ch/gitlab/geoff/cernml-coi-

. . (Confidence: 69.0%)
utils/docs/stable/index.html
=
@ Florian Rehm - AccGPT N9.04 2024 12

Natural to think about training one such model on experimental documentation.

Multiple R&D projects underway. A community-wide effort seems to be forming
on common ISsues.

Can it be used to curate/create documentation ?

‘@ 74
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https://indico.cern.ch/event/1423858/

Closure of simulation/reconstruction

Generator

— _ Reco.
Deep learning simulation level

Detector
level

“All you need” is accurate detector simulation.

Deep learning reconstruction (generator as target) applied to data.

Deep learning simulation (reco. as target) for simulated samples.

@;Opé/lg%
Al for the Axion Quest, J-R Vlimant

Invertible deep learning simulation can be used as unfolding.
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Simulation / Unfolding

Detector NN reco tailored Particle Invertible simulation models can
eve S for unfolding Level .
5 perform unfolding.
Novel unfolding methods available.
Not a black-box design : requires
physicist’s attention.
Still a lot of work on R&D to be done.
Full phase- ‘
space
unfolding Target Iunfolding inference\
Traditional eheervabie Pgen  ° > Punfold(Xpart)
g Approach g
© © II simulationl Iunfolding
forward inference
Psim ¢ > pdata(xreco)
Overview of ML Unfolding

@ 76
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https://arxiv.org/abs/2203.16722
https://arxiv.org/abs/2404.18807

_ .-

NanoGen Simulation
production (Geant4 based)

l !

NanoGen Digitization

!

Recontruction

!

NanoAODSIM
production

!

NanoAODSIM

<1 sec/ev

NEURAL SPLINE FLows

fl ZO) f1. Zj— 1) fz+1 zz
Q ORRS @

~
~ -
~—— S~

2o ~ po(2o) ; sz(zz) ZK ~ PK ZK)

dx

)

dz

px (o) = p2(2) g2 — og(px (2)) = log(pz(7 " (2)) — o (det

Gol

Flash-Sim

CMS Simulation Preliminary

————— FullSim
1l —— FlashSim
N
>
S
(V)]
O
(@]
S
Q0
[an]
o
()
(]
o
(@)]
8
o)

btagDeepFlavB btagDeepC

T T T T T v v v T T T r T v T
) T y < T 7
N 7 N ’ s / 1
N f
A
’ E E = 53 2> S L
/
i = b 14 i 11 & \
- 7,
B il / (AN %> )
Y 1 . ' k- :
4 4 1 b
2 N - I ¥ |‘ ;
A L
| Y ~ X g i
i 4 § A\ N 1 !
M—/J y \ A f
t S —— J
b I N
T T |' T T Hl T T T T

o °° R .w" go° «" °°QQ° RO S ¥ L NN RS RN
btagCMVA btagCSVV2 btagDeepB btagDeepC btagDeepFlavB

Predicting reconstructed NANO variables from
generator-level quantities.
Normalizing flow model, with neural spline yields
astonishing performance.
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https://cds.cern.ch/record/2858890

Reconstruction

MLPF: Efficient Machine-Learned Particle-Flow Reconstruction Using Graph Neural Networks

Event as input set Event as graph Transformed inputs ?120 e O BN B s e e s e
i) 4 i) E, | ttsimulation, 14 TeV
[ JIPS Graph building ‘\f Message passing "qc: 100 40 PU u
o " o—ELUNNIE — .—»—» > - 80 PU
. F&XIw=4 K G(X,Alw) = H > 8o 200 PU g
= —o— MLPF scaling
o 1 2 ool 1
Target set ¥ =y, Output set Y’ = {y/} 35
| -
Decoding Q i
Elementwise loss L(y;, /) BN cicentuwise 8’ 40}- |
classification & regression FFN S
—> , q’
D(x; hi[w) =y ::
201 -
x; = [type, pr, Excars Eucars 1> @ Nouter Pouters 95 - - -1 type € {track, cluster}
y; = [PID, p1, E,n, ¢, q, ...], PID € {none, charged hadron, neutral hadron, y, e*, u*}

1 1 I l | L I 1 l 1 1 1 l ] 1 I I 1 I | l I 1 1 1
h; € RN,N = 256 OO 2500 5000 7500 10000 12500 15000
Trainable neural networks: #, &, 9 Average event size [elements]

Building reconstruction software is a lengthy and costly project.

Surrogates learnable from existing software. End-to-end ML-
reconstruction learnable from full simulation.

May yield better algorithmic complexity.
Still a lot of work on R&D to be done.
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https://arxiv.org/abs/2101.08578

Symbolic Learning

Fig. 2A: Graph Network Fig. 2B: Rollout
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Symbolic learning is still evolving.
Can be used to learn formulas, or as a mean of interpretabillity.

Complementary to physics-inspired models to lear effective Lagrangian,
forces, interactions, ...

@ 79
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https://doi.org/10.1088/2632-2153/acfa63
https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_89.pdf

Sustainability

Deep learning models are notoriously computational
intensive to train : days, weeks, months ... on small to large
computing facilities.

Computational cost of training is however largely offset by
the gain in inference over classical algorithms, year-long
over world-wide-resources.

Through Al-assisted operation, resource cost reduction
could extend to accelerators, storage, networking,
computing facilities, ...

80
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Take home message :

Al-assisted experiment design, data
processing and apparatus control shall be
more efficient.

Carefully crafted physics inspired model
shall “learn all the things”’.

Al for the Axion Quest, J-R Vlimant
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Summary

= Machine learning has become extremely
performant.

= Deep learning offers great prospects for Science.
= Several ways to improve on resource usage.

= A lot of R&D done since

= Novel techniques entering experimental workflows.

= The future of science will be deep learning, always
with a "Physicists in the loop”.

This work is partially supported by the U.S. DOE, Office of Science, Office of High Energy
Physics under Award No. DE-SC0011925, DE-SC0019219, and DE-AC02-07CH11359.
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https://indico.cern.ch/e/DataScienceLHC2015

Al for the Axion Quest, J-R Vlimant

83



Decision Tree

Decision trees is a well known tool in supervised learning.
It has the advantage of being easily interpretable
Can be used for classification or regression

y =W )
v
y, >15
TRUE FALSE
y,<4.6 y,>3.14
% TRV KLSE Ty XLSE
a
Class A Class B Y, < -2 Class A
Root node m/ &SE
Internal node
Class A Class B
v Leaf node
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Diversity of Generative Models

Variational AutoEncoders (VAEs)
reconstr.
=
data = encoder latent space decoder data
o /
Generative Adversarial Networks (GANs)
: | .
noise = generator 2P+ |discriminator| « data
Normalizing Flows (NFs)
“easy” base o bijective o data
distribution transformation distribution
density estimation, p(x)
< Diag—C. Krause
sample generation .

Three main classes of generative models.
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The Mysteries of Deep Learning

Highly non-convex degenerate objective function
optimisation with gradient descent is not guaranteed,
and yet ...

A complex “teacher” can train a simpler “student” that
cannot learn from the data directly ...

Models are over-parametrised and yet manage to
generalise ...

Still quite empirical field, although theoretical progress
are made

86
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Non-Convex Optimisation

10 :

/IF you start here

/r? e
e - \30 W
ST K oz

The objective functions optimised in machine learning
are usually non-convex

Non guaranteed convergence of gradient descent

Gradients may vanish near local optimum and saddle
point

Al for the Axion Quest, J-R Vlimant T



Quantum Machine Learning

Deep learning is computing intensive, and de-facto enabled by use of
GPU. People are looking for ways to leverage possible quantum

advantage to accelerate machine learning techniques.

Main algorithms used in recent studies
= \/ariational Quantum Circuits (VQC)

= Quantum Support Vector Machine (QSVM)

= Quantum Restricted Bolztman Machine (QRBM)
= Quantum Adiabatic Machine Learning (QAML)

= Quantum Generative Adversarial Network (QGAN)

[

Field.i.r.1 constant evolution. Embedding is crucial.

Deep implications of kernel methods.

Software and toolkit available

a. Training the embedding b. Classification
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Machine Learning in Industry

Deep Learning Everywhere

oA

Rapidly Accelerating Use of Deep Learning at Google

Number of directories containing model description files

1500

Used across products:
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Prominent skill in industry nowadays.
Lots of data, lots of applications, lots
of potential use cases, lots of money.
Knowing machine learning can open
significantly career horizons.
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https://www.nvidia.com/en-us/deep-learning-ai/
http://www.shivonzilis.com/machineintelligence

Learning to Control

Rollout policy SL policy network RL policy network Value network Policy network Value network

P P, P, (@ls) v, (8)

P,

Vo

MJOM]aU |einsN

eleq

Learning to Walk via Deep Reinforcement Learning

Human expert positions Self-play positions

Mastering the game of Go with deep neural networks and tree search,

Modern machine learning boosts control technologies.
Al, gaming, robotic, self-driving vehicle, etc.

Al for the Axion Quest, J-R Vlimant T



https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103

Physics Knowledge

Learned Observables
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P. Komiske, E. Metodiev, J. Thaler,

B

Machine Learning can help understand Physics.
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https://arxiv.org/abs/1810.05165

Use Physics

a Data b DeltaGN c OGN/HOGN d f;5:0DE’s time derivatives
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Rollout trajectories per model

Ground truth True Ham. DeltaGN OGN HOGN
C d e f g

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia

Let the model include Physics principles to master convergence
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https://arxiv.org/abs/1909.12790

Learning from Complexity
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Conv 1: Edge+Blob Conv 3: Texture Conv 3: Object Parts

Machine learning model can extract information from complex dataset.

More classical algorithm counter part may
take years of development.
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Annual CPU Consumption [MHS06]
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The Computing Cost of Science
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2018 2020 2022 2024 2026 2028 2030 2032

Year

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026

~100 Petaflops

~1 Exaflops

2.5 Petaflops

28 Petaflops

l
~1 Exaflops
|

10 Petaflops
~120 Petaflops

~1 Exaflops

10 Petaflops
27 Petaflons

Taylor Childers (ANL)

Ever growing needs for computing resource.
Slowdown of classical architecture, over growth of GPU architecture.
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Xeon

Xeon Phi

PowerPC

Power9g+Nvidia

Xeon+Nvidia

AMD+Nvidia

Unknown

values are approximate
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https://indico.cern.ch/event/822126/contributions/3500169/

Operation Vectorisation

e
ey i —_—
. Iy )
L2 iz 07

[ W13

| O

ANN = matrix operations = parallelizable

W11 1 .. (Wi X ip) + (Wy X iy)]
W12 ' [zll = (WX i) + (W, X 1)
W13 | (WisX i) + (W5 X i) ]

Computation of prediction from artificial neural network model
can be vectorised to a large extend.
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Model Compression

Fast inference of deep neural networks in FPGAs
for particle physics

I . . Prune }:|
1st iteration _—

A THIH
3 H

Retrain _|=i
with L1 ¢ | Prune f...
g H

2nd jteration —_— .

Retrain /="
with L1, | Prune §w
! —_—

7t iteration —_—

before pruning after pruning

pruning
synapses

pruning
neurons

~

4 Automatic deep heterogeneous quantization of Deep )
Neural Networks for ultra low-area, low-latency inference
on the edge at particle colliders

TensorFlow Keras model
vy

Quantization -
configuration a hls4ml n EE
2 ) AutoQKeras ) Fixed-point translation 9 -
. optimization Parallelisation : | |
QKeras Firmware generation : L

Accuracy Resource

HLS project

model H EE N.
T ¢ T 4 -----------
QKeras QTools KTuner E
quantizers  estimates API
A:

2 1.04 4 — QKeras CPU 50 4 = LuT
g — (QKeras FPGA —— FF
é = = Post-train quant. = DSP
b 1.02 A 40
e —_
— o
S 1.00 — ® s
& / + o
e i g7
> 0.98 ! »® =) i
© I g
5 0.96 I *. 5 20 1
3 I ?
< I Cq()
< 0.94 I
g I 10 -
= " O
% 0.92 h &
52 | 0 +*0%$4

0.90 I 1 LI B B B B | T I I 1 Ll T LU B R B B |

5 10 15 BF BPBHQEQB 4 6 8 10 12 14 16 BFBPBHQEQB

Bitwidth Bitwidth

J

- J

Model inference can be accelerated by reducing
the number and size of operations.
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https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/1804.06913

Hyper-Fast Prediction

Keras
TensorFlow

PyTorch

Co-processing kernel

~ =" hls 4 ml

compressed
model — HLS . —
conversion Custom firmware

: : design
Usual machine learning g

software workflow ‘[f
tune configuration
precision
reuse/pipeline

Synthesizing FPGA firmware from trained ANN

J. Duarte et al.

Artificial neural network model can be
executed efficiently on FPGA, GPU, TPU, ...
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

Low Power Prediction

Best Results: Single View

x-view conv1pooll conv2| pool2 conv3 | pool3 conv4|poold| fc1 drop f02 drop fc3 AR
(127x50) (8x3) (2x1) (7x3) (2x1) (6x3) [ (2x1) (6x3) [(2x1)| (196) out out (11)

Convolutional Neural Network Result: ~80.42%

* 90 neurons, 86 synapses

« Estimated energy for a single

classification for meFBANNA
implementatio

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017. %OAK]I}}DGI

Slide C. Schuman

Neuromorphic hardware dedicated to spiking neural networks
Low power consumption by design
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https://indico.fnal.gov/event/13497/contribution/0

Specific Elements of
Machine Learning

100
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»

The Standard Model

Well demonstrated effective model.
~infinite amount of detailed, “labelled” simulation available.

| | < d 101
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Image Representation

(

[Translated] Azimuthal Angle (¢)

Jet-Images — Deep learning edition

250 <p,/GeV <260 GeV, 65 < mass/GeV < 95

Pythia 8, W' WZ, s = 13TeV
= 10°
% 1 1 10%
< 10
3
£ HEE 1
£ 05 (1 ] X
] ] | O] L 5] 10°
2 B = ] 10t
g H ]
I o [} [T} 10°
2 [ u
8 . | | 10*
£ - ]
| ug ) 10°
-0.5| [T 1]
5 R 10°
]
- 107
- 100
N 3
A 10

N
05 0 05 A
[Translated] Pseudorapidity (n)

250 <p,/GeV <260 GeV, 65 < mass/GeV <95
Pythia 8, QCD dijets, {s = 13 TeV.
10°

10°
10
1

10"
10?
| 410°
10%
10°
10°
107
10°
10°

-1 0.5 0 05 1

[Translated] Pseudorapidity (n)

Pixel p, [GeV]

[Translated] Azimuthal Angle (6)

250 <p,/GeV <260 GeV, 65 <mass/GeV <95

Pythia 8, W'— WZ, {5 = 13 TeV

[Translated] Azimuthal Angle (¢)

0.5 0 05 1
[Translated] Pseudorapidity (n)

250 < pT/GeV <260 GeV, 65 < mass/GeV <95
Pythia 8, QCD dijets, 1s = 13 TeV.

da3s

Pixel p, [GeV]

[Translated] Pseudorapidity (n)

1/(Background Efficiency)

150

100

<
o

Pythia 8, Vs =13 TeV

250 < pT/GcV < 300 GeV, 65 < mass/GeV <95

\

—— mass
T Ty
AR
Fisher
Maxout
—— Convnet
- Random

——————

0.6 0.8
Signal Efficiency

[

-

Deep-learning top taggers or the end of QCD?

0 5 10 15 20 25 30 35 40

¢' pixels

Background rejection 1/ep

10*

Ju—y
[en)
w

102

Ju—y
o

0
10! 5
= 10
10° 3
= L 15
s £
10 5 ggo i
5 K
L5 25
10725
3 30
-3
10 35 =
-
40

0 5 10 15 20

&' pixels

25 30 35 40

l SOFTDI{IOP—i—N—sul;)jettiness
MOTHEROFTAGGERS
DEegepToP full

DEEPTOP minimal

Top vs QCD

0.2 0.4 0.6

Signal efficiency eg

10!

5 5 §
Calo;;meter_ET [GeV]

s
&

Calorimeter signal are image-like.
Projection of reconstructed particle properties onto images possible.

Potential loss of information during projection.
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https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1701.08784

Sequence Representation

Unrolled RNN
Fully Connected
+
SoftMax
/_H I I N _L\

- [} oM | Z
FIREIREIRE >
COTTE| |8 12| ] |2
i >

Merge =E ] =

\ urdcntfby |Sdo| /J(’.t

B-Jet with Recurrent Neural Networks

\ ( nt emb

v(t1) v(t2) (ta1)
(t1) 1 (62) (tar) /

/N /N /N

/N TN T {

) Do

QCD-Aware Recursive Neural Networks for Jet Physics.
J -

J

Somehow arbitrary choice on ordering with sequence representation.

Physics-inspired ordering as inductive bias.

Ordering can be learned too somehow.
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https://arxiv.org/abs/1702.00748
http://cds.cern.ch/record/2255226

Graph Representation

@

Jet

Lepton Jet

MET

Hits in tracking detector Objects in an event

Hits in calorimeter detector Object sub-structure in an event

Graph Neural Networks in Particle Physics

Heterogenous data fits well in graph/set representation.

d 105
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https://arxiv.org/abs/2007.13681

Invariance and Symmetries

106

Al for the Axion Quest, J-R Vlimant



Dataset Degeneracy

Pre-process the dataset to reduce degeneracy.
Model training improves as the invariance does not have to be learned.

| | @ 107
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https://arxiv.org/abs/2006.04780

Inductive Bias

Cola 7 : y "
ki S R =k |01 . 2 Can C2
' : . ", () . . /_
\() 0 -~ 1 Cywns2 -+ Cnar)
9 -~
m=(k;
( (l:J )\ Lorentz Learning Layer / N
L‘ L()Lalz E ])T( J)
i — k; (E) 1a(T.
J J Il'.jnl L(l\,”)
(d) p
“‘jm ([jm) ) \

N
(._ 1.M \ ( Particles

(10 - 0 Ciny

o o

|rwarve
|||||

Energy/Particle Flow Network

Deep set

.
In
(

Fimr W |F,&FS Z.f(l’g?) Py ® F,
\ J

/

Lorentz group quivariant networks

Out

/

Embed the symmetry and invariance in the model.

Economy of model parameters.
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https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/2006.04780

de-correlation

@ 109
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De-correlation

Most background estimation methods (side-bands, ABCD, parametrized fit, ...)
will require background shape to somehow be independent of analysis
selections/processing (not only when using machine learning BTW).

_\.?1 +40604 ns H _‘{!1 "’4000(4 S H
Ql Q
N N
< S Domain adaptation
Learn to Pivot
Mje} m;.,

Numerous methods proposed to de-correlate model predictions and
quantities of interest (pt, mass, ... ).
Usually adding a term in the loss to constrain de-correlation.

{0 110
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https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1611.01046

Background Estimation

103! * Double DisCo
C A c Single DisCo
5 e Scan with ATLAS features
Q
(o)
oa
©
D B 5102}
o &
(@)
~ S
f— s K
, ABCD closure within 10% ;
ABCD + Disco || RPV stop search gy
1055 02 0.4 06 0.8 1.0

Normalized Signal Contamination (r)

Most popular background estimation method (ABCD), can be optimized
for de-correlation, yielding increased significance.
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https://arxiv.org/abs/2007.14400
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Syst. Estimation and Mitigation

( compute via automatic differentiation \
a4 c T ) N (T N (T 7
g 9 yO yl yg Softma.x '§() 50.00 I_1
T / -l | ]
fIX;0 '§2
) : J
E Lo |y | - mg f o @ z §b logﬁA U
7 | 7 A A RN AN o
o SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
o e o APPROXIMATION NETWORK STATISTIC LOSS
35| AANIZ=—0) 25 . . t4+1 _ gt
3 pAX)Z=0) stochastic gradient update ¢ * = ¢" +n(t)VU
30HC O MAXNZ= +0) 2.0 . . . .
= | . \_ INFERNO: Inference-Aware Optimisation Y,
ézo. SONIN. S | S S ] 1.0
Y| SR A ] 0.5 / . \
i i Background

1.0 my =500

—
—
CJ my =750 |
—
—

0.5

my =1000
my =1250
my =1500 |

i i i i - [
0'8.0 0.2 04 0.6 0.8 1.0 191.0—0,5 00 05 10 15 20 '

, 2'
f(X) c
o

\ Learn to pivot / Sfx1,x2,0) h
X2 3

= 0,001

w

500 1000 1500 2000 2500 3000
mll ww IGev]

\_ Parametrized Learning )

Systematic uncertainties can be propagated the usual ways.
No additional systematic from the model itself.
Methods to mitigate, propagate and optimize against systematic uncertainties.
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https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/1601.07913
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Domain in-Dependence

L A T
. OLclass | OW j S OLclass/OW l Leiass
~d 4
Input features 1D convolutions Dense
) o) ) ) Dense
[ (2] (2] (2]
Charged PF sllella|le N,
candidates | —» SlENENE - all g Predict jet
(25 x17) S (@) ? Bl 3 class
_—
Neutral PF BBRB = 2 s|s (b, ¢, uds,
. sllellelle 5} wlS =12 g, LLP)
candidates > |E||E||E||E] > K| > ||
(25 X 6) (C‘\l,J 9 9 < i '§ % ]
) o) g| g Dense
Secondary SHSHESl S Q|2 ——
vertices — |Z||E|E]|2] > £ oll o
— — — S8 |1 > |2l &| = domain
Global (14) > s 213 (simulation,
= data)
LLP c7o (1) > oo —
————— — ¢|>) ' !
| [T .
o T SR RN s I -
~ —A aLdomain/aw I 5 ' T i 2\)\ aLdomain/aw /\Ldomain
3 Ty
g
(O3 ot

Training region

—>» Forward
propagation

propagation

777 Backward [ Feature I Label I pomain

extraction prediction prediction

LLP jet tagger

cMS 35.9 fb' (13 TeV) CcCMS 35.9 fb' (13 TeV)
2] T T T T 2] 9 T T T T
-_g 10° Without DA (training sample) ¢ Data _g 10& With DA (training sample) ¢ Data
~ 10°F 12, 22 jets, pf™*° > 150GeV BZ/y* +jets > 10°F 1y, 22 jets, pf™*°> 150GeV Bz /y* +jets
< 107F JsD: (3.09+0.16)x 10° [CItE/t £ 107 F JsSD: (0.390.05) x 103 [t /t
Q 10° W +jets 2 10° W +jets
w8 []MC unc. w408 []MC unc.
10* [IMistag unc. 10* [IMistag unc.
10° 10°
10? 10°
10 10
. 1 .
i) 3 ge]
O 1.5f © 15
o flafter 1
S 05 305
m >l 0 T ' l 0 T T T l 0 T T l ) T I 0 T T m
(@] 0 0.2 0.4 0.6 0.8 1 (@] 0 0.2 0.4 0.6 0.8 1
Pmax(LLP1 cto=1mm) Pmax(LLP1 ctop=1mm)
Control region
CcMS 35.9 fb (13 TeV) CcMS 35.9 fb' (13 TeV)
7)) g T T T T T 7)) 9 T T T T T
c 10 - c 10 |
a s Without D ¢ Data a 10° With DA ¢ Data
~ 10F 2% 22jets, priu) > 100GeV Bz /v +iets B 1o7f 21 =2 Iets, priy > 100GeV EZ /v +jets
€ 106 JSD: (2.60+0.28) x 103 [/t £ | ° FJSD:(0.3820.10)x 10° [/t
2 10 W +jets 4 105 W +ijets
W q0° [ IMC unc. W 10 [ IMC unc.
[ IMistag unc. [ IMistag unc.

e

o

o

©

= T PR PR P ST = T P PR PR PR

o 0 0.2 0.4 0.6 0.8 1 o 0 0.2 0.4 0.6 0.8 1
Pmax(LLP|CTo=1mm) Pmax(LLP|CTo=1mm)

Gradient reversal on a domain-classifier to mitigate the discrepancies of
classifier output between data and simulation.
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https://doi.org/10.1088/2632-2153/ab9023
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The Black-box Dilemma

Depth of
thinking

Practical results

Deep learning may yield great improvements.
Having the “best classification performance” is not always sufficient.
Forming an understand of the processes at play is often crucial.

117
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Learning Observables

Electron classification performance l:so.
Base Additions (k,3) (AUC) 3122 )
THL 0.945
7HL +Mjet 0956 0.50
7THL S (L) 0.970
THL +Mije. [+.2 (1,1) |17 (1,1) | 0.971 R
7HL . (2, _) 0.970 log,o [EFP Observable]
THL +Mie |50 (2,1) | © (2,—)] 0.971 [ -
CNN 0.972 : L

logio [EFP Observable]

Search in the space of functions using decision ordering.
Simplified to the energy flow polynomial subspace.
Extract set of EFP that matches DNN performance.

e
S5
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https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984

Particle-Flow Reconstruction

As an example (batch, elem, feat) = (2, 6400, 25)

ffn_enc_id cg_id0 cg_id1 concat
(2, 6400, 256) M (2, 6400, 256) (-.y 256) (..., 1024)
PFElements
(2, 6400, 25)
ffn_enc_reg cg_reg0d cg_regl concat
(2, 6400, 256) M (2, 6400, 256) | (2, 6400, 256) (ry 1024)

Stacked CombinedGraph (cg) layers, each builds a new

ftn_charge
(2, 6400, 1)

ftn_id
(2, 6400, 8)

ffn_momentum
(2, 6400, 5)

graph in a learnable way and propagates information using
graph convolutions.

As an example (batch, elem,

feat) = (2, 6400, 25)

CombinedGraph:
input elements graph building + graph convolution
(2, 6400, 25) -
[—

one or multiple graph __..-

convolutions for -~
message passing

R

2,10,640,640)

graph convolution 15 -+128

(2, 10, 640, 128)

graph convolution 128 —+128

(2, 10, 640, 128)

(2, 6400, 128)

—

Dj = exp (-|ei-ej[2) where
e € R256 s the i-th element

output elements

(2, 6400, 128)
t

Uses built-in dense matrix, reshape and scatter/gather operations in TFE.
Requires batch-mode graphs. No N2 allocation or computation needed.

CMS Simulation Preliminary ~ Run 3 (14 TeV) CMS simulation Preliminary ~ Run 3 (14 TeV)
L I L L | U L L B B

c T T 1 c Py R Y L AL B T
8 QCo evernts PF MLPF i 8 0 QCoevents o MLPF i
@ 'l —— ch.had ¢ ch.had 3 — ch.had —+ vy ¢+ chhad ty
g - n.had n.had Té —— n.had —+ e* ¢ n.had 4 et
g 10°H- —+ HFHAD t HFHAD | 3107— —+ HFHAD  — u* ¢ HFHAD pt
5 —+ HFEM { HFEM 5 —— HFEM + HFEM
— Y —
2103 b e | 10 i
€ . €
g . S48 "“m.‘ip P_ a
= | | 5L o 8o el e e — 103 |
© 101 3t Far ety - []
E 10 Tm M ; ‘ ‘ E
[ < | 1 | e ? L] " oooc‘ e 9
M \ﬁ .‘H“.jl | ‘lﬁ .ﬁj | .‘ MR ﬁ 101 |
Iﬁl: 2 T + T I ‘ ] Iﬁl: 21T
| B 0 1 — B
I + +‘++|£ \.ﬁﬂhll +. 1Ilﬂ h | | | ‘ |l 1 N )
3 Samerdiuit et ot IS s -
i AU § .
l - .y ] L | 1 P - 1 1 P I
% 50 100 150 200 S 4 -2 0 2 4 6
PFCandidate pr [GeV] PFCandidate n

CMS Simulation Preliminary ~ Run 3 (14 TeV)

HIL I I I I I I I I | I

—h

0) o

o o
|

o

Inference with ONNXRuntime in a single CPU thread,

single GPU stream on NVIDIA RTX2060S 8GB. 1
Not a production-like setup. Synthetic inputs.
Model throughput only, no data preparation.
Performance vary depending on the chosen n
optimizations and hyperparameters.

typical Run3 range

| |

Ll 1 |
10000

f560b éOOOb éSOObI léOOOO
PFElements per event
Set of tracks & clusters in input to graph-based model
Classify sub-set of graph nodes as particle candidates
Regress parton kinematics from candidate
Model almost matching classical algorithm

Execution time quasi-linear with pile-up

Ll L L [ [

runtime [ms/ev]

00

-@— 119
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https://cds.cern.ch/record/2802826

event fraction

Jet Mass Regression

CMS Simulation Preliminary

CMS Simulation Preliminary

CMS Simulation Preliminary

_l T | T T T T | T T T T | T T T T |- C 1 T T T T I T T { T T T T | T T T T L C J T { T T T T | T T T T I T T T T L
0.14 anti-k ;. jets  wwweeee QCD - b/bb (soft drop) ] % 0.14- anti-k ;. jets e QCD - c/cc (soft drop) | % 0.14- anti-k ;. jets - QCD - light (soft drop)
0 12:_ R=15 —— QCD - b/bb (regression) _: g 0 12; R=15 —— QCD - c/cc (regression) _: g 0 12; R=15 —— QCD - light (regression) _:

T p_ >200 GeV R p, >200 GeV i R p, >200 GeV
0.1 ] 2 o1 . 2 0.1- .
0.08}- . . 0.08- .
0.061 . E 0.06[- ]
0.04 ] 04f . 0.04f .
0.02f . 02 . 0.02 =
O; ::' rl [ :.:"\- L headeal i E.:"-.. L ) " I‘ | L T E .:.‘H-.. ) . .: | L
o o5 1 15 2 % o5 1 15 2 % o5 1 15 2
reco © arget reco / Mtarget reco / Mtarget
0.7 CMS Slmulatlon Prellmlnary 0.7 CMS Slmulatlon Prellmlnary
g 0 65 = anti=k ]ets """ e H ->bb (soft drop) E 0_6.5 e "tl'k }ets SRS S H > bb (soft drop)
H ->bb : = H ->bb
Sy B T - o ooty %005'2 R=t1s oo (oot
> 400 GeV ’ 200 GeV
b 0 5 pT> s e S ->cc (regression) bm 05 pT'> B e v e H 2> CC (regression)
0.45 >qq (soft drop) 0.45E i e H->qq (soft drop)
0.4 ->qq (regression) 0.4 .. —— H->qq (regression) -
.35 E — 0.35F - Hmdgro BT S
0.3 0.30 “irse Tt
0.25F ... 0.25 e T Mt 2
0.2E --. e e E ............. 025 LTt _-
O o O e S A 0.155 = —
0. =/ === ﬂ:\,...._& . 0.1
0.05 0. OSE
11 1 | 11 1

%O 100 120 140 160 180 200 220

Migrger [GEV/C7]

Jet mass regression using ParticleNet model,

Al for the Axion Quest, J-R Vlimant

%O 100 120 140 160 180 200 220

Miarget [GeV/c?

]

120


https://cds.cern.ch/record/2777006

[W,N,19] [W, N, R, 4]
Clusters Rechits
features l
Rechits N
GCN conv.
[W.N,371 Rechits summary
vector  -----
[W,N,18]
Features
building Distance
DNN Self-
attention
l layer
Clusters feat. vector Adjacency matrix
[W,N,64] [W,N,N]

Graph
Highway
network

|

N
conv.

[W,N,64]

Ecal Clustering/Regression

Self-Attention
— > combination
layer

Energy

[W,N,146] —> regression

[W,N,128]
Window [W, 16]
Classification Window
Self-Attention summary
) features
Cluster EE
classification
DNN [W,144]
v
DNN

Cluster
classification

L

Window
[W, N, 1] classification W, 11

> layer

Energy
calibration
factor

[w, 1]

« W : number of windows in the batch
« N: number of clusters

« R: number of rechits

« [X,Y,Z]tensor dimension

Inputs
Trainable layers
Tensors with dimensions
I_l Outputs
_» Tensorflow
""" > Skipped connection

Concatenation

g Aggregation (over clusters dimension)

0(Eraw/Esim)

10"

1072

0'DeepSC/O'Must

—_
(=]

o
©

CMS Simulation 14 TeV
I T T T I T T T ] T T T I T T T I
INGenl Algorithm
- [0, 1.479] e Mustache
- [1.479, 3] O DeepSC |
- Photon
DT:‘_+
0 ——
D—a—_._
| \ | | | I
_I T | T T I T T |_
| P L - [
0 20 40 60 80 100

ECGen [GeV]

Graph-based model with self-attention trained to :

v seed-cluster classification
v super-cluster classification

v super-cluster energy regression
Promising work in progress for calorimeter reconstruction
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CMS Simulation 14 TeV
T ——
- EGen Algorithm ]
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e & o 8 8
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https://cds.cern.ch/record/2803235

Tagging Scale Factor

var‘ij:tgles SF(et)
T Learn per-jet data/MC scale
MC factor using adversarial

Prescaled MC Discriminator h .
D technique.
SN
o O\\\
NNZ
¥ hod
\ /
contamination ‘ train data/
» [ /
corrected |
g heavy jet flavour . light jet flavour
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DISCO: Distance Correlation

Jenson-Shannon Divergence (JSD) as the comparison metric for shaping.
Residual shaping needs to enter systematics uncertainty estimation.
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