ALP searches at the High Energy Frontier

Axion Quest 2024 08/08/2024

Jeremi Niedziela for ATLAS, CMS, and TOTEM Collaborations

Outline

INTRODUCTION

- ALPs vs. axions
- High-mass ALPs:
 - new decay channels
 - different experimental approaches

OTHER ALP COUPLINGS

- ALP-top/invisible coupling
 - ATLAS <u>EXOT-2018-62</u>
 - CMS <u>EXO-22-014</u>
- ALP-bosons coupling
 - ATLAS <u>EXOT-2019-27</u>, <u>HDBS-2019-19</u>
 - CMS EPJC 81 (2021) 13, JHEP 07 (2023) 148, EXO-22-022

ALP-PHOTON COUPLING

- Tagged protons
 - CMS + TOTEM <u>PRD 110 012010</u>
 - ATLAS JHEP 07 (2023) 234
- Heavy lons
 - ATLAS JHEP 03 (2021) 243
 - ► CMS <u>HIN-21-015</u>

SUMMARY

- ALPs in UPCs
- Quark, boson, and DM channels at LHC
- Comparison with direct DM experiments

INTRODUCTION

QCD axions

- need no introduction
- characteristic two-photon vertex

- searches using:
 - light-through-the-wall
 - helioscopes
 - haloscopes
 - **P**

QCD axions

- need no introduction
- characteristic two-photon vertex
- searches using:
 - light-through-the-wall
 - helioscopes
 - haloscopes

Axion-Like Particles

- mass-coupling relation not fixed
- appear in many SM extensions
- more decay channels open at higher masses
- can be probed at colliders

SAPPHIRES

Sag

QCD axions

- need no introduction
- characteristic two-photon vertex
- searches using:
 - light-through-the-wall
 - helioscopes
 - haloscopes

Axion-Like Particles

- mass-coupling relation not fixed
- appear in many SM extensions
- more decay channels open at higher masses
- can be probed at colliders

SAPPHIRES

Sar

ALP-PHOTON

COUPLING

ALPs in UPCs

Ultraperipheral Collisions at the LHC

- non-overlapping protons/ions → EM interaction
- allows for photon-induced processes:
 - light-by-light scattering
 - Breit—Wheeler process
 - γγ→µµ
 - γγ→ττ
 - ► ...

7

ALPs in UPCs

Ultraperipheral Collisions at the LHC

- non-overlapping protons/ions → EM interaction
- allows for photon-induced processes:
 - light-by-light scattering
 - Breit—Wheeler process
 - γγ→µµ
 - YY→TT
 - ► ...

ALPs in UPCs

- ALPs could be produced in photon-fusion
 - quasi-real photons \rightarrow ALPs produced at rest
 - decaying to back-to-back photons
- photon flux scales with Z²
 - for PbPb: $Z^4 = 5 \cdot 10^7$ higher cross-section than in pp or e^+e^-

ALPs in UPCs

Ultraperipheral Collisions at the LHC

- non-overlapping protons/ions → EM interaction
- allows for photon-induced processes:
 - light-by-light scattering
 - Breit—Wheeler process
 - γγ→µµ
 - $\gamma\gamma \rightarrow \tau\tau$
 - <u> ا</u>

Heavy lons

- no pileup
- **lower** statistics
- lower energies ($\approx 5 \text{ TeV}$)
- m_{inv}: 5-100 GeV

Protons

- need to fight with pileup
- larger statistics lacksquare
- higher energies (\approx 13 TeV)
- m_{inv}: ≈100 GeV

ALPs in UPCs

- ALPs could be produced in photon-fusion
 - quasi-real photons \rightarrow ALPs produced at rest
 - decaying to back-to-back photons
- photon flux scales with Z²
 - for PbPb: $Z^4 = 5 \cdot 10^7$ higher cross-section than in pp or e⁺e⁻

CMS PRD 110 012010 ATLAS JHEP 07 (2023) 234

	ATLAS	CMS	
beams	pp@13 TeV		
dataset	2017	2016-2018	
L _{int} (fb ⁻¹)	14.6	103	
trigger	2 photons E⊤ > 35 (25) GeV	≥ 2 photons E⊤ > 60 GeV H/E < 0.15	

Event selections

- 2 good photons (CMS: $m_{inv} > 350$ GeV)
- acoplanarity < 0.005 (0.01) in CMS (ATLAS)
- kinematic matching between diphoton (central) \bullet and two protons (forward)
 - \rightarrow ensures the same interaction (rejecting pileup)

CMS PRD 110 012010 ATLAS JHEP 07 (2023) 234

	ATLAS	CMS	
beams	pp@13 TeV		
dataset	2017	2016-2018	
L _{int} (fb ⁻¹)	14.6	103	
trigger	2 photons E⊤ > 35 (25) GeV	≥ 2 photons E⊤ > 60 GeV H/E < 0.15	

Event selections

- 2 good photons (CMS: $m_{inv} > 350$ GeV)
- acoplanarity < 0.005 (0.01) in CMS (ATLAS)
- kinematic matching between diphoton (central) \bullet and two protons (forward)
 - \rightarrow ensures the same interaction (rejecting pileup)

CMS PRD 110 012010 ATLAS JHEP 07 (2023) 234

Backgrounds

• inclusive $\gamma\gamma$ and γ +jet processes

	ATLAS	CMS	
beams	pp@13 TeV		
dataset	2017	2016-2018	
L _{int} (fb ⁻¹)	14.6	103	
trigger	2 photons E⊤ > 35 (25) GeV	≥ 2 photons E⊤ > 60 GeV H/E < 0.15	

Event selections

- 2 good photons (CMS: $m_{inv} > 350$ GeV)
- acoplanarity < 0.005 (0.01) in CMS (ATLAS)
- kinematic matching between diphoton (central) \bullet and two protons (forward)
 - → ensures the same interaction (rejecting pileup)

	ATLAS	CMS	
beams	pp@13 TeV		
dataset	2017	2016-2018	
L _{int} (fb ⁻¹)	14.6	103	
trigger	2 photons E⊤ > 35 (25) GeV	≥ 2 photons E⊤ > 60 GeV H/E < 0.15	

Event selections

- 2 good photons (CMS: $m_{inv} > 350$ GeV)
- acoplanarity < 0.005 (0.01) in CMS (ATLAS)
- kinematic matching between diphoton (central) \bullet and two protons (forward)
 - \rightarrow ensures the same interaction (rejecting pileup)

Light-by-light and BSM signals

• light-by-light scattering has too small a cross-section to be observed → e.g. in CMS expected <0.02 LbL events

CMS PRD 110 012010 ATLAS JHEP 07 (2023) 234

Light-by-light and BSM signals

- light-by-light scattering has too small a cross-section to be observed → e.g. in CMS expected <0.02 LbL events
- given no excess events observed, limits in the coupling-mass plane are derived by both ATLAS and CMS

CMS PRD 110 012010 ATLAS JHEP 07 (2023) 234

	ATLAS	CMS
beams	PbPb@5.02 TeV	
dataset	2015+2018	
L _{int} (nb ⁻¹)	≈2.2	
trigger	≥ 2 photons E⊤ > 2.5 GeV	≥ 2 photons E⊤ > 2.0 GeV
other improved photon dedicated e ID reconstruct		dedicated e/y reconstruction

ATLAS JHEP 03 (2021) 243 CMS <u>HIN-21-015</u>

	ATLAS	CMS
beams	PbPb@5.02 TeV	
dataset	2015+2018	
Lint (nb ⁻¹)	≈2.2	
trigger	$ \ge 2 \text{ photons} \\ E_T > 2.5 \text{ GeV} $ $ \ge 2 \text{ photons} \\ E_T > 2.0 \text{ GeV} $	
other	improved photon ID	dedicated e/γ reconstruction

Signature

- very empty events
- no tracks, muons, jets...
- only 2 back-to-back photons

Event selections

- exactly 2 photons with $m_{inv} > 5 \text{ GeV}$
- charged & neutral exclusivity
- diphoton $p_T < 1-2$ GeV
- acoplanarity < 0.01

ATLAS JHEP 03 (2021) 243 CMS <u>HIN-21-015</u>

	ATLAS	CMS
beams	PbPb@5.02 TeV	
dataset	2015+2018	
L _{int} (nb ⁻¹)	≈2.2	
trigger	≥ 2 photons E _T > 2.5 GeV	≥ 2 photons E⊤ > 2.0 GeV
other	improved photon ID	dedicated e/γ reconstruction

Signature

- very empty events
- no tracks, muons, jets...
- only 2 back-to-back photons

Event selections

- exactly 2 photons with $m_{inv} > 5 \text{ GeV}$
- charged & neutral exclusivity
- diphoton $p_T < 1-2$ GeV
- acoplanarity < 0.01

Backgrounds

non-resonant light-by-light scattering (LbL)

	ATLAS	CMS
beams	PbPb@5.02 TeV	
dataset	2015+2018	
L _{int} (nb ⁻¹)	≈2.2	
trigger	$ \ge 2 \text{ photons} \\ E_T > 2.5 \text{ GeV} $ $ \ge 2 \text{ photons} \\ E_T > 2.0 \text{ GeV} $	
other	improved photon dedicated e/γ ID reconstruction	

Signature

- very empty events
- no tracks, muons, jets...
- only 2 back-to-back photons

Event selections

- exactly 2 photons with $m_{inv} > 5 \text{ GeV}$
- charged & neutral exclusivity
- diphoton $p_T < 1-2$ GeV
- acoplanarity < 0.01

Backgrounds

Pb

Pb

- non-resonant light-by-light scattering (LbL)
- Breit—Wheeler (B—W) process with electrons misidentified as photons

ATLAS JHEP 03 (2021) 243 CMS <u>HIN-21-015</u>

	ATLAS	CMS
beams	PbPb@5.02 TeV	
dataset	2015+2018	
L _{int} (nb ⁻¹)	≈2.2	
trigger	≥ 2 photons E⊤ > 2.5 GeV	≥ 2 photons E⊤ > 2.0 GeV
other	improved photon dedicated e/γ ID reconstruction	

Signature

- very empty events
- no tracks, muons, jets...
- only 2 back-to-back photons

Event selections

- exactly 2 photons with $m_{inv} > 5 \text{ GeV}$
- charged & neutral exclusivity
- diphoton $p_T < 1-2$ GeV
- acoplanarity < 0.01

Events passing trigger Yellow: particles' energy Blue: tracks of charged particles

NLIMBER OF EVENTS: 4'600'6'72

After selections

NLIMBER OF EVENTS: BI

Well reconstructed photons, $A_{\phi} < 0.01$

NLIMBER OF EVENTS: 26

08/08/2024

ATLAS JHEP 03 (2021) 243 CMS <u>HIN-21-015</u>

Limits on ALPs

• no significant excess in m_{inv}

08/08/2024

ATLAS JHEP 03 (2021) 243 CMS <u>HIN-21-015</u>

OTHER ALP COUPLINGS

Top and Invisible couplings

High-mass ALPs

- higher masses
 - → other production mechanisms and decay channels possible
- spin-0 pseudo-scalar "a", assuming Minimal Flavor Violation → Higgs-like Yukawa couplings with SM particles

ATLAS EXOT-2018-62 CMS EXO-22-014

- \rightarrow Higgs-like Yukawa couplings with SM particles

- combination/reinterpretation of these results allows to set strong limits on ALP models

Top and Invisible couplings

Limits

- strongest limits on signal strength from ATLAS come from:
 - <350 GeV: $t\bar{t}$ +ET^{miss}
 - ► >350 GeV: tttt

ATLAS EXOT-2018-62 CMS <u>EXO-22-014</u>

Top and Invisible couplings

Limits

- strongest limits on signal strength from ATLAS come from:
 - <350 GeV: $t\bar{t}$ +ET^{miss}
 - ▶ >350 GeV: tttt
- CMS: comparable limits in 50-500 GeV range from a combination of 0I+1I+2I Signal Regions

08/08/2024

ATLAS EXOT-2018-62 CMS <u>EXO-22-014</u>

Models and signatures

- ALPs can also couple to W and Z bosons
- these analyses focus on $E_T^{miss} + V$ signatures

08/08/2024

ATLAS <u>EXOT-2019-27</u> CMS EPJC 81 (2021) 13

Models and signatures

- ALPs can also couple to W and Z bosons
- these analyses focus on $E_T^{miss} + V$ signatures

08/08/2024

	ATLAS	CMS
beams	pp@13 TeV	
dataset	Run 2	
L _{int} (fb ⁻¹)	≈140	
trigger	ET ^{miss} > 70-110 GeV	dilepton p⊤ ≈ 20 (10) GeV leading (subleading)

Models and signatures

- ALPs can also couple to W and Z bosons
- these analyses focus on $E_T^{miss} + V$ signatures

08/08/2024

	ATLAS	CMS
beams	pp@13 TeV	
dataset	Run 2	
L _{int} (fb ⁻¹)	≈140	
	E _T miss	dilepton
trigger	> 70-110 GeV	p⊤ ≈ 20 (10) GeV
		leading (subleading)

Backgrounds

- most common backgrounds are:
 - $Z(\rightarrow vv)$ +jets
 - diboson
 - W(→Iv)+jets
 - ► tt
- constrained from di-leptonic and single-leptonic CRs + simulation

Event selections

Different selections for merged or resolved topologies, some differences between CMS and ATLAS. In general:

- large E_T^{miss} > 100-200 GeV
- number of jets, b-jets, and leptons requirements \rightarrow reduces top and WZ backgrounds
- $\Delta \phi$ between E_T^{miss} and jets/dileptons must be sufficiently large \rightarrow suppressing energy mismeasurement
- additional requirements on the dijet/dilepton system (angles, m_{inv}) \rightarrow suppresses non-resonant and DY backgrounds

Event selections

Different selections for merged or resolved topologies, some differences between CMS and ATLAS. In general:

- large E_T^{miss} > 100-200 GeV
- number of jets, b-jets, and leptons requirements \rightarrow reduces top and WZ backgrounds
- $\Delta \phi$ between E_T^{miss} and jets/dileptons must be sufficiently large \rightarrow suppressing energy mismeasurement
- additional requirements on the dijet/dilepton system (angles, m_{inv}) \rightarrow suppresses non-resonant and DY backgrounds

ATLAS <u>EXOT-2019-27</u> CMS EPJC 81 (2021) 13

ATLAS

- placing limits on ALP-W coupling as a function of the effective scale fa
- fixed $m_a = 1 \text{ MeV}$ (doesn't change much until up to 1 GeV)
- c_W/f_a above 0.11/TeV are excluded

ATLAS <u>EXOT-2019-27</u> CMS EPJC 81 (2021) 13

ATLAS

- placing limits on ALP-W coupling as a function of the effective scale fa
- fixed $m_a = 1 \text{ MeV}$ (doesn't change much until up to 1 GeV)
- c_W/f_a above 0.11/TeV are excluded

CMS

Limits on signal strength as a function of ALP mass (with DM mass fixed at 1 GeV)

Boson couplings (Higgs)

Models and signatures

- ALPs can couple to the Higgs boson
- signatures with 4 photons in the final state

ATLAS <u>HDBS-2019-19</u> CMS JHEP 07 (2023) 148 EXO-22-022

Boson couplings (Hig

Models and signatures

- ALPs can couple to the Higgs boson
- signatures with 4 photons in the final state

J	Ć)5	3)

	ATLAS	CMS
beams	pp@13 TeV	
dataset	Run 2	
L _{int} (fb ⁻¹)	130-140	
	diphotons	
trigger	E _T ≈ 30 (20) GeV	
	leading (subleading)	

Boson couplings (Hig

Models and signatures

- ALPs can couple to the Higgs boson
- signatures with 4 photons in the final state

			_ \
	(()
1		1) /
-			/

	ATLAS	CMS
beams	pp@13 TeV	
dataset	Run 2	
L _{int} (fb ⁻¹)	130-140	
	diphotons	
trigger	E _T ≈ 30 (20) GeV	
	leading (subleading)	

Experimental procedure

Analyses are performed for:

- 4 **resolved** photons (allowing some of them to be missing)
- merged photons \rightarrow using neural networks to recognize them

Boson couplings (Hig

Models and signatures

- ALPs can couple to the Higgs boson
- signatures with 4 photons in the final state

V	$\boldsymbol{\mathcal{C}}$		C	-)
J		J		5)

	ATLAS	CMS
beams	pp@13 TeV	
dataset	Run 2	
L _{int} (fb ⁻¹)	130-140	
	diphotons	
trigger	E _T ≈ 30 (20) GeV	
	leading (subleading)	

Experimental procedure

Analyses are performed for:

- 4 **resolved** photons (allowing some of them to be missing)
- merged photons \rightarrow using neural networks to recognize them

Background estimation:

- ATLAS: searching for a signal around 125 GeV
 - → using sidebands
- CMS: using a 4-photon event classifier

Boson couplings (Higgs)

Limits

- no significant excesses \rightarrow limits are placed on the Branching Ratio of $H \rightarrow aa$
- similar results from ATLAS and CMS: BR above $\approx 10^{-5}$ excluded (for masses in range 5-60 GeV)

ATLAS <u>HDBS-2019-19</u> CMS JHEP 07 (2023) 148 EXO-22-022

Direct Dark Matter searches

Limits

• some of these results also allow comparison with direct DM searches

Direct Dark Matter searches

Limits

- some of these results also allow comparison with direct DM searches
- older CMS results were competitive with direct searches in the 1-2 GeV range

08/08/2024

Direct Dark Matter searches

Limits

- some of these results also allow comparison with direct DM searches
- older CMS results were competitive with direct searches in the 1-2 GeV range
- new ATLAS results are also competitive with direct searches in the 1-6 GeV range

08/08/2024

SUMMARY

Summary

UPCs of protons and Heavy lons

- great tool for high-mass ALP searches
- best limits in the 5-2000 GeV range

Summary

UPCs of protons and Heavy lons

- great tool for high-mass ALP searches
- best limits in the 5-2000 GeV range

Other couplings

ATLAS and CMS can also probe ALPs via q/V/H/x couplings

25

Summary

UPCs of protons and Heavy lons

- great tool for high-mass ALP searches
- best limits in the 5-2000 GeV range

Other couplings

ATLAS and CMS can also probe ALPs via q/V/H/x couplings

Dark Matter searches

LHC searches for ALPs→invisible complementary to direct detection experiments \rightarrow good in $m_x \in [1, 6]$ GeV range

25

08/08/2024

