Contributions of CP Violating Operators to the Neutron/Proton EDM using Lattice QCD

Rajan Gupta

XXth Rencontres du Vietnam, "Axion Quest", Quy Nhon, 2024

LA-UR-21-22962

LANL EDM collaboration

Shohini Bhattacharya

Tanmoy Bhattacharya

Vincenzo Cirigliano (\longrightarrow INT,UW)

Rajan Gupta

Emanuelle Mereghetti

Boram Yoon (\longrightarrow NVIDIA)

LANL Publications

- Bhattacharya et al, "Dimension-5 CP-odd operators: QCD mixing and renormalization", PhysRevD.92.114026
- Bhattacharya et al, "Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD", PhysRevLett.115.212002
- Bhattacharya et al, "Isovector and isoscalar tensor charges of the nucleon from lattice QCD", PhysRevD.92.094511
- Gupta et al, "Flavor diagonal tensor charges of the nucleon from (2 + 1 + 1)-flavor lattice QCD" PhysRevD.98.091501
- Bhattacharya et al, "Contribution of the QCD ⊖-term to nucleon electric dipole moment", Phys. Rev. D 103, 114507 (2021)
- Bhattacharya et al, "Quark Chromo-Electric Dipole Moment Operator on the Lattice", Phys. Rev. D 108 (2023) 7, 074507

Outline

- Introduction
- Contribution of the quark EDM operator to nEDM
- Contribution of the $\Theta\text{-term}$ to nEDM
- Contribution of the quark chromo EDM operator to nEDM
- Contribution of the Weinberg 3-gluon operator to nEDM
- Future

The standard model does not explain

- The clumpiness of the universe cannot be explained by visible matter alone
 - \rightarrow Dark Matter
- · accelerated expansion of the universe
 - \rightarrow Dark Energy
- Too much matter—the baryon asymmetry of the universe (BAU)
 - \rightarrow If created after inflation, then Sakharov's three conditions (baryon number violation, out of equilibrium evolution, and CP violation) have to be satisfied

Status

- The \mathcal{QP} in the CKM matrix is too small to explain BAU via baryogenesis
- The GP coupling $\overline{\theta}$ of the Θ -term in QCD is constrained by the upper bound on neutron EDM. The current value, $\overline{\theta} \sim 10^{-10}$, is unnaturally small
- Most extensions of the standard model have additional sources of \mathcal{GP}

Electric dipole moment in an elementary particle (\propto Spin) \iff CP violating interactions

$\mathcal T$ (GP if CPT is a good symmetry) and EDMs

The race to measure EDMs is on: status of nEDM

Hierarchy of Scales: $\ensuremath{\mathcal{CP}}$ in BSM \rightarrow EDMs

Pospelov & Ritz

Jordy de Vries

œ

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\overline{\theta}} + \mathcal{L}_{\mathrm{BSM}} \longrightarrow \mathcal{L}_{\mathrm{CPV}}^{\mathrm{eff}}$$

Effective CPV Lagrangian at Hadronic Scale

$$\begin{split} \mathcal{L}_{\text{CPV}}^{d \leq 6} &= -\frac{g_s^2}{32\pi^2} \overline{\theta} G \tilde{G} & \text{dim}{=}4 \text{ QCD } \theta\text{-term} \\ &- \frac{i}{2} \sum_{q=u,d,s,c} d_q \overline{q} (\sigma \cdot F) \gamma_5 q & \text{dim}{=}5 \text{ Quark EDM (qEDM)} \\ &- \frac{i}{2} \sum_{q=u,d,s,c} \tilde{d}_q g_s \overline{q} (\sigma \cdot G) \gamma_5 q & \text{dim}{=}5 \text{ Quark Chromo EDM (qCEDM)} \\ &+ d_w \frac{g_s}{6} G \tilde{G} G & \text{dim}{=}6 \text{ Weinberg's 3g operator} \\ &+ \sum_i C_i^{(4q)} O_i^{(4q)} & \text{dim}{=}6 \text{ Four-quark operators} \end{split}$$

- $\overline{\theta} \leq \mathcal{O}(10^{-8} 10^{-11})$: Strong CP problem
- Dim=5 terms suppressed by $d_q \approx \langle v \rangle / \Lambda_{BSM}^2$; effectively dim=6
- Dim=6 terms suppressed by $d_W \approx \langle 1 \rangle / \Lambda_{BSM}^2$
- All terms up to d = 6 are leading order

Contributions to the Neutron EDM d_n

$$d_n = \overline{\theta} \cdot C^{\theta} + \sum_q d_q \cdot C_q^{\text{qEDM}} + \sum_q \tilde{d}_q \cdot C_a^{\text{qEDM}} + \overline{\theta} \cdot C^W + \cdots$$

• GP couplings in the SM and BSM

 \rightarrow Couplings in the low-energy effective CPV Lagrangian ($\overline{\theta}, d_q, \widetilde{d}_q, \ldots$)

Lattice QCD

. . .

 \longrightarrow Nucleon matrix elements in presence of CPV interactions

 $C_{\theta} = \langle N | J^{\text{EM}} | N \rangle |^{\theta}$ $C^{\text{qEDM}} = \langle N | J^{\text{EM}} | N \rangle |^{\text{qEDM}}$ $C^{\text{qcEDM}} = \langle N | J^{\text{EM}} | N \rangle |^{\text{qcEDM}}$ $C^{\text{W}} = \langle N | J^{\text{EM}} | N \rangle |^{\text{Weinberg}}$

Lattice QCD

• Non-perturbative Vacuum of QCD

– Generate ensembles of gauge configurations distributed as e^{-L}

Calculate n-point correlation functions

- Quark line diagrams
- Ensemble average \implies path integral: $\int DUe^{-L}O \rightarrow 1/N \sum_{i}^{N} O_{i}$
- Obtain matrix elements of operators composed of gauge and quark fields between hadronic states: $\langle N(p_f) | O(Q^2) | \overline{N}(p_i) \rangle$

Numerical evaluation of the path integral \Longrightarrow statistical errors

Removing excited-state contributions from Correlation Functions

- Lattice meson and nucleon interpolating operators also couple to excited states with the same quantum numbers
- The lowest excited states in $\Gamma_{nucleon}^{n}$ are dense towers of $N\pi$, $N\pi\pi$, ... states!!

Lattice QCD \implies Physical Results

Extrapolate data at $\{a, M_{\pi}, M_{\pi}L\}$ to $a = 0, M_{\pi} = 135$ MeV, $M_{\pi}L \to \infty$

- Renormalization: Lattice scheme \longrightarrow continuum $\overline{\mathbf{MS}}$
 - involves complicated/divergent mixing for qcEDM, Weinberg, 4-quark operators
- Simulations at Physical Pion Mass!
 - As $M_{\pi} \rightarrow 135 \text{ MeV} \Longrightarrow$ computational cost increases \Longrightarrow larger errors
- Finite Lattice Spacing
 - Extrapolate from finite lattice spacings 0.045 < a < 0.15 fm
- Finite Volume
 - Finite lattice volume effects small in most EDM calculations for $M_{\pi}L > 4$

Neutron EDM from Quark EDM term

$$\begin{aligned} \mathcal{L}_{\text{CPV}}^{d \leq 6} &= -\frac{g_s^2}{32\pi^2} \overline{\theta} G \tilde{G} & \text{dim} = 4 \text{ QCD } \theta \text{-term} \\ &- \frac{i}{2} \sum_{q=u,d,s} d_q \overline{q} (\sigma \cdot F) \gamma_5 q & \text{dim} = 5 \text{ Quark EDM (qEDM)} \\ &- \frac{i}{2} \sum_{q=u,d,s} \tilde{d}_q g_s \overline{q} (\sigma \cdot G) \gamma_5 q & \text{dim} = 5 \text{ Quark Chromo EDM (qCEDM)} \\ &+ d_w \frac{g_s}{6} G \tilde{G} G & \text{dim} = 6 \text{ Weinberg's 3g operator} \\ &+ \sum_i C_i^{(4q)} O_i^{(4q)} & \text{dim} = 6 \text{ Four-quark operators} \end{aligned}$$

Contribution of $\mathcal{L}_{\rm qEDM}$ to nEDM

- $\mathcal{L}_{\text{CPV}} = \mathcal{L}_{\text{CKM}} + \mathcal{L}_{\text{qEDM}}$ with $\mathcal{L}_{\text{qEDM}} = -\frac{i}{2} \sum_{q=u,d,s,c} d_q \overline{q} (\sigma \cdot F) \gamma_5 q$
- Adding \mathcal{L}_{qEDM} to the theory adds $\bar{q}\sigma_{\mu\nu}q$ to the electromagnetic current.
- Its matrix elements $\langle N | \overline{q} \sigma_{\mu\nu} q | N \rangle = g_T^q \overline{u}_N \sigma_{\mu\nu} u_N$ where g_T are the tensor charges
- They give the leading contributions of qEDMs

$$d_N = d_u g_T^u + d_d g_T^d + d_s g_T^s + d_c g_T^c \tag{1}$$

• $d_q \propto m_q$ in many models \Rightarrow Precision determination of $g_T^{\{s,c\}}$ is important

Calculating the Tensor Charges

Charges $g_T^{u,d,s,c}$ get contributions from "Connected" and "Disconnected" diagrams

- "Disconnected" diagram calculation is expensive. They are noisy & small
- Only the "Disconnected" diagram contributes to $g_T^{\{s,c\}}$
- Robust results with errors \leq 5% have been obtaibned

qEDM: FLAG2019, 2021 and Current Status

			a.k	L,	٨	Ś		
Collaboratio	n N_f	0	Ľ,	4	Ŷ	4	g_T^u	g_T^d
PNDME 20	2+1+1	★‡	*	*	*	0	0.783(27)(10)	-0.205(10)(10)
ETM 19	2+1+1		0	*	*	0	0.729(22)	-0.2075(75)
PNDME 18B 2+1+1		★‡	*	*	*	0	0.784(28)(10)#	-0.204(11)(10) [#]
PNDME 16	2+1+1	0 [‡]	*	*	*	0	0.792(42) ^{#&}	-0.194(14) ^{#&}
Mainz 19	2+1	*	0	*	*	0	0.77(4)(6)	-0.19(4)(6)
JLQCD 18	2+1		0	0	*	0	0.85(3)(2)(7)	-0.24(2)(0)(2)
ETM 17	2		0	0	*	0	0.782(16)(2)(13)	-0.219(10)(2)(13)
							g_T^s	
PNDME 20	2+1+1	★‡	*	*	*	0	-0.0022(12)	
ETM 19	2+1+1		0	*	*	0	-0.00268(58)	
PNDME 18B 2+1+1		★‡	*	*	*	0	-0.0027(16) [#]	
Mainz 19	2+1	*	0	*	*	0	-0.0026(73)(42)	
JLQCD 18	2+1		0	0	*	0	-0.012(16)(8)	
ETM 17	2		0	0	*	0	-0.00319(69)(2)(22)	

Constraints on BSM Assuming qEDM is the only CP Interaction

$$d_N = d_n q_T^u + d_d q_T^d + d_s g_T^s + d_c g_T^c$$

[Bhattacharya, et al. (2015), Gupta, et al. (2018)]

Status:

- $g_T^{u,d,s}$ results from multiple collaborations with control over $a \to 0$ extrapolation
- Single result from ETM 19 $g_T^c = -0.00024(16)$

Neutron EDM from QCD θ -term

$$\begin{split} \mathcal{L}_{\text{CPV}}^{d \leq 6} &= -\frac{g_s^2}{32\pi^2} \overline{\theta} G \tilde{G} & \text{dim=4 QCD } \theta\text{-term} \\ &- \frac{i}{2} \sum_{q=u,d,s} d_q \overline{q} (\sigma \cdot F) \gamma_5 q \quad \text{dim=5 Quark EDM (qEDM)} \\ &- \frac{i}{2} \sum_{q=u,d,s} \tilde{d}_q g_s \overline{q} (\sigma \cdot G) \gamma_5 q \text{ dim=5 Quark Chromo EDM (qcEDM)} \\ &+ d_w \frac{g_s}{6} G \tilde{G} G & \text{dim=6 Weinberg's 3g operator} \\ &+ \sum_i C_i^{(4q)} O_i^{(4q)} & \text{dim=6 Four-quark operators} \end{split}$$

QCD θ-term

$$S = S_{QCD} + i\theta Q, \qquad Q = \int d^4x \frac{G\tilde{G}}{32\pi^2}$$

At the leading order, the correlation functions calculated are

$$\left\langle N \mid J_{\mu}^{\rm EM} \mid N \right\rangle \Big|^{\overline{\Theta}} \approx \left\langle N \mid J_{\mu}^{\rm EM} \mid N \right\rangle \Big|^{\overline{\Theta}=0} - i\overline{\Theta} \left\langle N \left| J_{\mu}^{\rm EM} \int d^4x \; \frac{G_{\mu\nu}^a \widetilde{G}_{\mu\nu}^a}{32\pi^2} \right| N \right\rangle \,,$$

 \Longrightarrow on each configuration weight $\langle N \mid J_{\mu}^{\rm EM} \mid N \rangle$ by Q

Reduce lattice artifacts by calculating Q under gradient flow (GF) Distribution of Q stabilizes much faster than convergence to integer under GF

Q - NearestInteger(Q)

Estimate of χ consistent with chiral perturbation theory (PRD103, 114507 (2021)

d_n from the form factor F_3 : $d_n = \lim_{q^2 \to 0} F_3(q^2)/2M_N$

In simulations with *'imaginary* θ ' and *'expansion in* θ ' we extract the CPV form factor $F_3(0)$ from the the most general decomposition of the ground-state matrix element:

$$\begin{split} \langle N(p',s') \mid J_{\mu}^{\rm EM} \mid N(p,s) \rangle_{\mathcal{QP}}^{\overline{\Theta}} &= \overline{u}_{N}(p',s') \bigg[\gamma_{\mu} F_{1}(q^{2}) \\ &+ \frac{1}{2M_{N}} \sigma_{\mu\nu} q_{\nu} \Big(F_{2}(q^{2}) - iF_{3}(q^{2}) \gamma_{5} \Big) \\ &+ \frac{F_{A}(q^{2})}{M_{N}^{2}} (\not{q} q_{\mu} - q^{2} \gamma_{\mu}) \gamma_{5} \bigg] u_{N}(p,s) \,, \end{split}$$

- Form Factors: Dirac F_1 , Pauli F_2 , Electric dipole F_3 , Anapole F_A
- Electric $G_E = F_1 \tau F_2$, Magnetic = $F_1 + F_2$

Removing ESC from n-point correlation functions Γ^n

$$\Gamma^{2\text{pt}}(\tau) \equiv \langle \Omega | N(\tau) \overline{N}(0) | \Omega \rangle = \sum_{i=0}^{\infty} |\langle N_i | \overline{N} | \Omega \rangle|^2 e^{-E_i \tau}$$

$$\Gamma^{3\text{pt}}_O(\tau, t) \equiv \langle \Omega | N(\tau) O(t) \overline{N}(0) | \Omega \rangle = \sum_{i,j=0}^{\infty} \langle \Omega | N | N_j \rangle^* \langle N_i | \overline{N} | \Omega \rangle \langle N_j | O | N_i \rangle e^{-E_i t} e^{-E_j (\tau - t)}$$
(2)

- ESC removed by making fits to the spectral decomposition of correlation functions
- Which excited states contribute significantly to Γ_n is not known *a priori*!
- $N\pi$ state with neutron quantum numbers has smallest mass gap
- Fits without/with the $N\pi$ state give a very different value in many Γ_n

Do $N\pi$ excited states contribute to the 4-point function Γ_V^{Θ} , ?

A χ PT analysis by Bhattacharya *et al.* (2021) shows :

 \implies Contribution of low energy $N\pi$ excited-state should grow as $M_{\pi} \rightarrow 135 \text{ MeV}$

Large πNN GP coupling \overline{g}_0

Results without and with including $N\pi$ state when removing ESC

Without (top) With (bottom) $N\pi$ -state

Bhattacharya, et al., PRD 103, 114507 (2021)

- The two fits–with/without the $N\pi$ excited state–are not distinguished by the χ^2
- Resolving ESC is a major systematic

Status from Bhattacharya et al. (Updated 2023)

	Neutron	Proton
	$\overline{\Theta} e \cdot fm$	$\overline{\Theta} e \cdot fm$
Bhattacharya 2021	$d_n = -0.003(7)(20)$	$d_p = 0.024(10)(30)$
Bhattacharya 2021 with $N\pi$	$d_n = -0.028(18)(54)$	$d_p = 0.068(25)(120)$
ETMC 2020	$ d_n = 0.0009(24)$	-
Dragos 2019	$d_n = -0.00152(71)$	$d_p = 0.0011(10)$
Syritsyn 2019	$d_n \approx 0.001$	_
χ QCD 2023	$d_n = 0.00148(14)(31)$	$d_p = 0.0038(11)(8)$

Table: Lattice results for the contribution of the Θ -term to the neutron and proton EDM.

- Including $N\pi$ excited state in the ESC analysis gives a much larger result
- Reliable estimate of the contribution of the ⊖-term to nEDM requires higher statistical precision and control over ESC

Is the chiral fit robust in recent calculations of the $\Theta\text{-term}$

MSU: Dragos, *et al.* (2019) χ QCD, Jian Liang *et al.*, arXiv:2301.04331 (2023) MSU: $d_n = -1.52(71) \times 10^{-3} \overline{\theta} \ e \cdot fm$ χ QCD, $d_n = 0.00148(14)(31) \overline{\theta} \ e \cdot fm$

- multiple *a* but large pion mass $m_{\pi} > 400 \text{MeV}$
- Inflection point occurs near smallest M_{π} to satisfy $d_n = 0$ at $M_{\pi} = 0$

LATTICE QCD Results for θ -term (Circa 2024)

• Small error points fixed $d_n = 0$ at $M_{\pi} = 0$ in fits to data at $M_{\pi} > 300 \text{ MeV}$

Lattice Calculations for $g_{\pi NN}$

$g_{\pi NN}$: Current Status and Future Prospects

$$\mathcal{L}_{\pi NN}^{CPV} = -\frac{\bar{g}_0}{2F_\pi} \bar{N} \boldsymbol{\tau} \cdot \boldsymbol{\pi} N - \frac{\bar{g}_1}{2F_\pi} \pi_0 \bar{N} N - \frac{\bar{g}_2}{2F_\pi} \pi_0 \bar{N} \tau^3 N + \cdots$$

- Chiral symmetry relations + nucleon σ -term & mass splittings $\longrightarrow g_{\pi NN}$ [Vries, Mereghetti, Seng, and Walker-Loud (2017)]
- No direct lattice calculation of $g_{\pi NN}$ published yet

Can be calculated from $\langle N|A_{\mu}(q)|N\rangle_{\text{CPV}}$ following the same methodology used for neutron EDM, i.e., $\langle N|V_{\mu}(q)|N\rangle_{\text{CPV}} \rightarrow \langle N|A_{\mu}(q)|N\rangle_{\text{CPV}}$

Conclusions

- Significant progress.
- Issues of signal (statistics), $N\pi$ contribution, and renormalization remain
- · Gradient flow scheme is, so far, best for renormalization
- quark-EDM: Lattice QCD has provided results with $\lesssim 5\%$ uncertainty
- O-term: Significant Progress. No reliable estimates yet
 - Statistics
 - Does Nπ provide leading excited-state contamination?
- quark chromo-EDM: Signal in the 3 methods being used
 - Renormalization and mixing (Working on gradient flow scheme)
 - Does Nπ provide leading excited-state contamination?
- Weinberg $G\widetilde{G}G$ Operator has signal
 - Address the mixing with $\Theta\text{-term}$ in gradient flow scheme
- Four-quark operators: No calculations yet

Need 10-100 X Larger Computational Resources