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Outline

• New spin-dependent interactions

• ARIADNE experiment 

• SQUID development at CAPP/IBS

• Other activities in ARIADNE collaboration
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Dark Matter and New Interactions 

• About 96% of the Universe is filled with non-baryonic 
components; dark energy and dark matter

• Dark matter is not associated with Standard Model → New  
theory 

• Theories beyond Standard Model predict weakly-coupled 
scalar, pseuo-scalar bosons as dark matter candidate

• Some light mass bosons may be an answer for dark matter 
and other fundamental physics questions: ex) axions

• Could it be associated with another, as of yet, unobserved 
interactions? 

3 https://physics.aps.org/articles/v11/48



New spin-dependent interactions? 

• Weakly-coupled, long-range interactions are a generic consequence of spontaneously 

broken continuous symmetries (Goldstone theorem)

• Such boson with small enough mass have macroscopic Compton wavelength → 

possible to mediate new interactions in longer range.

• Specific theories (axions, extra dimensions) imply new interactions at sub-mm scales

• Dark energy density of∼ (1meV)4 order →∼ 100𝜇m scale 

• Experimental tests for new spin-dependent interactions

• Laboratory constraints in “mesoscopic” range is less common
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An example of non-standard spin-dependent 

interaction with spin 0 boson exchange
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𝑔𝑠 𝑖𝛾5𝑔𝑝

Monopole-dipole interaction mediated by axions

• Originated from  𝐿𝜙 = 𝜓(𝑔𝑠 + 𝑖𝛾5𝑔𝑝)𝜓𝜙
• Axion mediated interaction between polarized and unpolarized objects 

• Violates both P and T symmetry

• Investigated by searching for frequency shifts correlated with position of unpolarized mass

• Not very well constrained over “mesoscopic” range ( 𝜇𝑚 ∼ 𝑚𝑚 )
J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130, 1984

𝐿𝜙 = 𝜓(𝑔𝑠 + 𝑖𝛾5𝑔𝑝)𝜓𝜙



• Search for QCD axion from monopole-dipole interaction between Tungsten mass and polarized 3He

• Effective magnetic field from

• Independent from fermion's magnetic moment, 

• not couple to the angular moment or charge 

• No Maxwell equation ➜ can't be screened by magnetic shielding

• 𝐵eff drive spin precession in a laser-polarized 3He: 𝐵spin

𝐵
⃗

eff ∼ 10−22T → 𝐵
⃗

spin ∼ 10−18

• Detect NMR signal with SQUID

• Resonant enhancement of signal with 𝑄 ∼ 𝜔𝑇2

• Source the axion field from local mass: no dark matter axion required

• Potential to probe broad axion mass range:  0.1meV ≤ 𝑚𝑎 ≤ 10meV

Axion Resonant InterAction DetectioN Experiment 

(ARIADNE)

6
A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 161801, 2014

J. Jaeckel and A. Ringward, Ann. Rev. Nucl. Part. Sci. 60, 405, 2010

CAPP-MAX

SQUID

𝐵eff

𝐵spin
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Experimental Design of ARIADNE

• Detector part

• Polarized 3He gas (Indiana): ∼ 2 × 1021/cc density

• Quartz block (Northwestern/Stanford) with 3He chamber of∼ 10mm×
3mm × 150𝜇m

• Superconducting magnetic shield (CAPP/Northwestern/Stanford): ∼
108S. F

• SQUID (CAPP): ∼ 4fT/ Hz

• Source Mass part

• Rotating Stage (Northwestern): 11 segments, 10Hz, 𝜔 = 10𝜔rot 

• Rotational Source Mass (UIUC): Tungsten (high nuclear density)
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3He Sample Chamber 

Source Mass

SQUID
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Non-magnetic LHe Dewar

• Non-magnetic LHe Dewar made with G10 and Al, μ-metal Shielding

• Assembled at Northwestern University:  Now in vacuum and cooling test

• Will be moved to Indianan University for installation of main components inside



Quartz block for 3He/SQUID
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• Assembly of multiple quartz blocks: maintained at ~4.2K

• A spheroidal chamber for 3He sample with 10mm × 3mm × 150𝜇m
• Wall thickness on a side to the source mass ∼ 75𝜇m
• A sets of D coil for generating magnetic holding fields

• Nb layer with shielding factor of∼ 108

Nb Layer

3He chamber

Quartz

SQUIDQuartz

D-shape coil

H Fosbinder-Elkins et al 2022 Quantum Sci. Technol. 7 014002



• The SQUID needs to be placed in the 30mG of holding field 

• Ambient noise ➔ Magnetometer vs Gradiometer

• The SQUID needs to be sensitive enough to detect dipole field

• Magnetic noise level of SQUID:∼ 4fT/ Hz,

• The SQUID needs to be fully thermalized at 4.2K

• Thermalization/operation of SQUID without direct contact with LHe
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SQUID Development at CAPP/IBS
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SQUID under the Magnetic Field
• Measured Displacement power spectral 

density with accelerometer on a low 

vibrational pad (LVP) at CAPP

• There exists a vibration with a level of ∼

2nm/ Hz at 100Hz

• With a size of 𝑑 = 3𝑚𝑚 in SQUID 

pickup coil under the 30mG of holding 

field 

• Magnetic noise level:𝛿𝐵 ≈ 2pT/ Hz

• Second order planer coaxial planner 

gradiometer 
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Transduced Magnetic Flux

• Magnetic flux passing through the 

pickup loop : Φ𝑧0

• The compensation coil for 

gradiometer : 𝑟com = 2𝑟pickup

Magnetometer Gradiometer

z0(mm) r ɸ (zWb) r ɸ (zWb)

0.5 1.42 56.3 1.48 89.7

1.0 1.55 24.8 1.74 34.0

1.5 1.78 13.6 2.04 17.7

2.0 2.07 8.47 2.43 10.7
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Optimization of SQUID Gradiometer

• SNR =
𝜙𝑔

𝛿𝜙𝑛
2+𝛿𝜙𝑣

2+𝛿𝜙𝑞
2

• Intrinsic noise 𝛿𝜙𝑛 = 1𝜇𝜙0/ Hz

• Vibrational noise 𝛿𝜙𝑣 = 1nm/ Hz

• Quantum noise 𝛿𝜙𝑞 =
ℏ𝛾

2

𝑛 3
He

𝑇2

𝑉

• Relative SNR to SNR(z0=2mm, r=2.17mm)

Gradiometer

z0(mm) r SNRmax ɸ (zWb)

0.5 1.45 3.3 89.1

1.0 1.61 2.7 33.3

1.5 1.88 1.7 17.2

2.0 2.17 1.0 10.3
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Magnetic Field Noise
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Thin-film SQUID Gradiometer

• Prototype for test purpose

• Fabricated by Star Cryo. LLC based on CAPP design 

values

• Inner coil 1: d=3.45mm, t=0.05mm

• Inner coil 2 : d=3.57mm, t=0.05mm

• Outer coil : d=5mm, t=0.1mm

• Estimated SQUID intrinsic noise: ∼ 4fT/ Hz

• Spin induced noise:∼ 10fT/ Hz
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SQUID Noise spectrum

• Measured in a Magnetic 

Shielding Room (MSR)

• Cooled SQUID with LHe 

• Measured magnetic field noise 

level:∼ 14fT/ Hz at 100Hz
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SQUID in the Quartz Container  

• Need to cool down SQUID 
through contact with 
Quartz block

• Need to install SQUID in a 
very specific position

• Need to be able to swap 
SQUID

• SQUID holder with a 
material of good thermal 
conductivity (also non-
magnetic)

3
He chamber SQUID SQUID with Holder
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Thermal properties of materials

[1] J. Clarke and I. A. Braginski. The SQUID Handbook, Wiley VCH, 2004.

• Quartz (single crystal) :  ∼ 200W/mK or higher 

• G10 and Pyrex : ∼ 0.1W/mK

• Polycrystalline Ceramic (MACOR) : ∼ 1W/mK at 4K
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Ceramic Holder

T sensor 

High

T sensor Low

Expected thermal conductivity: ~1W/m/K at 4K

Ceramic SQUID Holder

Ceramic Holder with SQUID

4K Stage
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One Strip (X) One High/One Low (X) Two High (O)

SQUID Thermalization at 4K
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Added two stripes of Litz wire

Thermal contact of SQUID 
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Front Ceramic Holder

• Realize the effect of cooling 

without Litz wire

• Design front ceramic plate with 

narrow opening near SQUID chip

• Direct contact with Si wafer

• Improve thermalization of SQUID 

without any Litz strip

• Also protect SQUID bonding
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with front ceramic plate

SQUID operation at 4K
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Pulse Tube Cryocooler

Low-vibration Cryostat

LHe Dewar

(in MSR)

𝑆𝐵
Τ1 2(T/ Hz)

∼ 10−12

∼ 1.4 × 10−14

∼ 10−13

𝑆𝜙
Τ1 2(𝜙0/ Hz)

∼ 10 × 10−6

∼ 5.0 × 10−6

∼ 35 × 10−6

SQUID Noise Level
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SQUID with Quartz Holder  

M. Omini and A. Sparavigna, Physical Review B, 61, 6677 (2000)

Front Holder Rear Holder

• Fabrication of SQUID holders with polycrystalline Quartz

• Expected thermal conductivity : ∼ 1W/mK at 4K

• Thermalization (and operation) of SQUID with new Quartz holder will be tested soon
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Second batch of SQUID 

• Same pickup coil size

• Low profile design with shorter length



Rotating Source Mass

• Made with high purity Tungsten (~99.95%), magnetic impurity 

<0.4ppm

• 3.8cm outer diameter, 4mm thick Tungsten block,

• 11 segments, and 200μm modulation depth,

• Need to maintain the wobble below ∼ 10𝜇m ➔ Position monitoring 

with two channels interferometer+Reflective index mark
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Rotating Drive Stage
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• Rotating stage remains at higher temperature (170K)

• located inside layers of μ-metal shielding

• Source mass must be kept at a distance of 100μm from the  Quartz block

• Stability is monitored with interferometers (with reflective index on the mass)

• Characterization of magnetic field noise

• 10μm wobble at 10Hz produce magnetic field noise of 5 × 10−19T/ Hz

N. Aggarwal et. al. Phys. Rev. Res. 4, 013090, (2022)



MEOP 3He Polarization Setup at Indiana Univ.
• Four 1m long pumping cells with polarization rate up to 𝑃max ≈ 0.7 for 1mbar of gas

• Pressurize up to ≈ 1bar in a storage volume with non-magnetic compressor

• Final polarization up to 𝑃storage ≈ 0.55 at the storage volume

• Upgrade with modern parts

30 D. S. Hussey, et. al,  Rev. of Sci Inst, 76(5), 053503, 2005
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Summary
• Theories beyond Standard Model predict long-range, spin-dependent 

interactions that could be medicated by light bosons

• ARIADNE is a new experiment looking for axion mediated interaction 

with a resonant NMR method. 

• ARIADNE could reach some of the interesting regime of parameter 

space corresponding to dark matter axions.

• ARIADNE plans to conduct first prototype measurement in 2025

• CAPP is actively working on the SQUID R&D for ARIADNE 
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“Thank you!” 





Superconducting Shielding
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a

z

Ideal position of the 

SQUID

Real SQUID position

z0

z1

𝑆. 𝐹𝑚 =
𝐻𝑡(𝑧 = 𝑧0)

𝐻𝑡(𝑧 = 𝑧1)
=
cosh(1.84

𝑧0
𝑎
)

cosh(1.84
𝑧1
𝑎
)
=

𝑆. 𝐹𝑖𝑑

cosh(1.84
𝑧1
𝑎
)

• Measured shielding factor of quartz tube with 250~750nm thicken of Nb sputtered layers,

• Compared with ideal shielding factor for Nb tube: S ⋅ Ftube = cosh(1.84
𝑧0

𝑎
) for 𝑎 = 25mm, 𝑧0 =∼

150mm
108 S.F when 𝑎 ∼ 14mm

H Fosbinder-Elkins et al 2022 Quantum Sci. Technol. 7 014002
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