

Axion Resonant InterAction DetectioN Experiment (Recent Progress in ARIADNE)

Yun Chang Shin

Center for Axion and Precision Physics Research (CAPP), Institute for Basic Science (IBS)

On behalf of the ARIADNE Collaboration

Northwestern University, Stanford University, Indiana University, Perimeter Institute, PTB, UIUC and CAPP/IBS

The Axion Quest Conference August 7th 2024

- New spin-dependent interactions
- ARIADNE experiment
- SQUID development at CAPP/IBS
- Other activities in ARIADNE collaboration

Outline

Dark Matter and New Interactions

- About 96% of the Universe is filled with non-baryonic components; dark energy and dark matter
- Dark matter is not associated with Standard Model \rightarrow New theory
- Theories beyond Standard Model predict weakly-coupled scalar, pseuo-scalar bosons as dark matter candidate
- Some light mass bosons may be an answer for dark matter and other fundamental physics questions: ex) axions
- Could it be associated with another, as of yet, unobserved interactions?

https://physics.aps.org/articles/v11/48

New spin-dependent interactions?

- Weakly-coupled, long-range interactions are a generic consequence of spontaneously broken continuous symmetries (Goldstone theorem)
 - Such boson with small enough mass have macroscopic Compton wavelength \rightarrow possible to mediate new interactions in longer range.
- Specific theories (axions, extra dimensions) imply new interactions at sub-mm scales
 - Dark energy density of ~ $(1 \text{meV})^4$ order $\rightarrow \sim 100 \mu \text{m}$ scale
- Experimental tests for new spin-dependent interactions
 - Laboratory constraints in "mesoscopic" range is less common

5

- Originated from $L_{\phi} = \psi(g_s + i\gamma_5 g_p)\psi\phi$
- Axion mediated interaction between polarized and unpolarized objects
- Violates both P and T symmetry
- Not very well constrained over "mesoscopic" range ($\mu m \sim mm$)

An example of non-standard spin-dependent interaction with spin 0 boson exchange

Monopole-dipole interaction mediated by axions

Investigated by searching for frequency shifts correlated with position of unpolarized mass

J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130, 1984

Axion Resonant InterAction DetectioN Experiment (ARIADNE) Search for QCD axion from monopole-dipole interaction between Tungsten mass and polarized 3He

- Effective magnetic field from $U=-ec{\mu}\cdotec{B}_{
 m eff}$

$$\vec{B}_{\rm eff} = -\frac{\hbar g_s g_p}{4\gamma \pi M} \left(\frac{1}{\lambda_{\phi} r} + \frac{1}{r^2}\right) e^{-r/\lambda_{\phi}} \hat{r}$$

- Independent from fermion's magnetic moment,
- not couple to the angular moment or charge
- No Maxwell equation \rightarrow can't be screened by magnetic shielding
- $B_{\rm eff}$ drive spin precession in a laser-polarized 3He: $B_{\rm spin}$
- $B_{\rm eff} \sim 10^{-22} {\rm T} \rightarrow B_{\rm spin} \sim 10^{-18}$
- **Detect NMR signal with SQUID**
- Resonant enhancement of signal with $Q \sim \omega T_2$
- Source the axion field from local mass: no dark matter axion required
- Potential to probe broad axion mass range: $0.1 \text{meV} \le m_a \le 10 \text{meV}$

J. Jaeckel and A. Ringward, Ann. Rev. Nucl. Part. Sci. 60, 405, 2010 A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 161801, 2014

ARIADNE Physics Reach

• The limit of $g_s g_p$ with the given experimental condition from

$$B_{\rm eff} \leq B_{\rm min}$$
,

• The fundamental noise limit from transverse magnetization of ³He as

$$\sqrt{M_N^2} = \sqrt{\frac{\hbar\gamma\mu_{^3\mathrm{He}}n_sT_2}{2V}}$$

The minimum magnetic field from the noise becomes

$$\begin{split} B_{\min} &\simeq \frac{1}{p} \sqrt{\frac{2\hbar b}{n_s \mu_{^3\text{He}} T_2 V}} \\ &= \mathbf{3} \times \mathbf{10^{-19} T} \times \left(\frac{1}{p}\right) \sqrt{\left(\frac{b}{1\text{Hz}}\right) \left(\frac{1\text{mm}^3}{V}\right) \left(\frac{10^{21}\text{cm}^{-3}}{n_s}\right) \left(\frac{1000s}{T_2}\right)} \\ \bullet \text{ SNR in a measurement } \tau \text{ can be} \\ &\qquad \text{SNR} = \frac{B_{\text{eff}} \sqrt{\tau}}{B_{\min}} \\ \bullet \text{ The minimum coupling constant } g_s g_p \text{ becomes} \end{split}$$

SNR in a measurement τ can be

$$\mathrm{SNR} = \frac{B_{\mathrm{eff}}\sqrt{\tau}}{B_{\mathrm{min}}}$$

• The minimum coupling constant $g_s g_p$ becomes

$$g_s g_p \leq \frac{\mathrm{SNR} \times B_{\min}}{\sqrt{\tau}} \frac{4\pi M \gamma_f}{\hbar n_s} \frac{1}{\int \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \hat{r} \cdot \hat{x} dV}$$

A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 161801, 2014

Experimental Design of ARIADNE 3He Sample Chamber Quartz block (Northwestern/Stanford) with 3He chamber of $\sim 10 \text{mm} \times 10^{10}$ Superconducting magnetic shield (CAPP/Northwestern/Stanford): ~ **Source Mass** Nb/Gold coated Quartz block SQUID Cu block sample pickup coil chamber source mass Cu foil Rotating Stage (Northwestern): 11 segments, 10Hz, $\omega = 10\omega_{rot}$ radiation shie Rotational Source Mass (**UIUC**): Tungsten (high nuclear density) Spin speed pattern **Rotation index**

- **Detector part**
 - Polarized 3He gas (Indiana): ~ 2×10^{21} /cc density
 - $3 \text{mm} \times 150 \mu \text{m}$
 - 10⁸S.F
 - SQUID (CAPP): ~ $4fT/\sqrt{Hz}$
- **Source Mass part**

Non-magnetic LHe Dewar

 \bullet

Will be moved to Indianan University for installation of main components inside

- A sets of D coil for generating magnetic holding fields
- Nb layer with shielding factor of $\sim 10^8$

CAPP

H Fosbinder-Elkins et al 2022 Quantum Sci. Technol. 7 014002 10

SQUID Development at CAPP/IBS

- The SQUID needs to be placed in the 30mG of holding field
 - Ambient noise
 → Magnetometer vs Gradiometer
- The SQUID needs to be sensitive enough to detect dipole field
 - Magnetic noise level of SQUID: ~ $4fT/\sqrt{Hz}$,
- The SQUID needs to be fully thermalized at 4.2K
 - Thermalization/operation of SQUID without direct contact with LHe

SQUID under the Magnetic Field

100

- Measured Displacement power spectral density with accelerometer on a low vibrational pad (LVP) at CAPP
- There exists a vibration with a level of $\sim 2nm/\sqrt{Hz}$ at 100Hz
- With a size of d = 3mm in SQUID pickup coil under the 30mG of holding field
 - Magnetic noise level: $\delta B \approx 2 \text{pT}/\sqrt{\text{Hz}}$
- Second order planer coaxial planner gradiometer

	magne			
z₀(mm)	r	φ (zWb)	r	φ (zWb)
0.5	1.42	56.3	1.48	89.7
1.0	1.55	24.8	1.74	34.0
1.5	1.78	13.6	2.04	17.7
2.0	2.07	8.47	2.43	10.7

Optimization of SQUID Gradiometer

• SNR =
$$\frac{\phi_g}{\sqrt{\delta\phi_n^2 + \delta\phi_v^2 + \delta\phi_q^2}}$$

• Intrinsic noise
$$\delta \phi_n = 1 \mu \phi_0 / \sqrt{\mathrm{Hz}}$$

• Vibrational noise
$$\delta \phi_v = 1 \mathrm{nm}/\sqrt{\mathrm{Hz}}$$

• Quantum noise
$$\delta \phi_q = \frac{\hbar \gamma}{2} \sqrt{\frac{n_{-3}}{V} \frac{n_{-3}}{V}}$$

	Gradiometer				
z₀(mm)	<u> </u>	SNR _{max}	φ (zWb)		
0.5	1.45	3.3	89.1		
1.0	1.61	2.7	33.3		
1.5	1.88	1.7	17.2		
2.0	2.17	1.0	10.3		

	3.5	
SNR	3.0	
	2.5	
	2.0	
	1.5	
	1.0	_ _
	0.5	

0.0

SNR of SQUID gradiometer

	_	
	_	
-	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
J	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
)	_	

Magnetic Field Noise Field of SQUID

Z0 (mm)

Thin-film SQUID Gradiometer

- Prototype for test purpose
- Fabricated by Star Cryo. LLC based on CAPP design values
- Inner coil 1: d=3.45mm, t=0.05mm
- Inner coil 2 : d=3.57mm, t=0.05mm
- Outer coil : d=5mm, t=0.1mm
- Estimated SQUID intrinsic noise: $\sim 4 fT / \sqrt{Hz}$
 - Spin induced noise: $\sim 10 fT / \sqrt{Hz}$

SQUID Noise spectrum

- Measured in a Magnetic Shielding Room (MSR)
- Cooled SQUID with LHe
- Measured magnetic field noise level:~ $14 fT/\sqrt{Hz}$ at 100Hz

SQUID in the Quartz Container

- Need to cool down SQUID through contact with Quartz block
- Need to install SQUID in a very specific position
- Need to be able to swap SQUID
- SQUID holder with a material of good thermal conductivity (also nonmagnetic)

Thermal properties of materials

	Т (К)	Copper	Aluminum	Stainless steel 304	Niobium	G10 ^A	Nylon	Pyrex ^B	Teflon	Al ₂ O ₃
Young's	300	128	70.0	194	102	38	2.9	62.6	0.38	_
modulus	80	140	76.8	208	_	41	7.6	_	5.4	_
(GPa)	4	143	79.1	204	_	_	_	_	_	_
Stress at	300	350	110	1.1×10^{3}	_	1.2×10^{3}	59	_	7.5	_
0.2% strain	80	420	150	1.5×10^{3}	_	1.7×10^{3}	21	_	83	_
(MPa)	4	_	_	_	_	_	_	_	_	_
Thermal	300	397	236	15.2	53.7	$0.80^{ m C}$	0.30	1.13	0.25	40
conductivity	80	571	415	8.33	57.9	$0.50^{ m C}$	0.22	0.52	0.22	900 ^D
$(Wm^{-1}K^{-1})$	4	11370 ^E	1576	0.252	99.7	0.18 ^C	0.012	0.11	0.04	110 ^D
								· · · ·		

• Quartz (single crystal) : $\sim 200W/mK$ or higher

• G10 and Pyrex : $\sim 0.1 W/mK$

Polycrystalline Ceramic (MACOR) : $\sim 1W/mK$ at 4K

D: Single-crystal; polycrystalline 80K: 120 Wm⁻¹K⁻¹; 4K: ~1 Wm⁻¹K⁻¹

E: High-purity copper (better than 99.9%), lower purity: value down to 300 Wm⁻¹K⁻¹

F: Warp direction (normal direction: 0.66 % @ 80 K; 0.72 % @ 4 K)

G: Value at 100 K

SQUID Thermalization at 4K

Thermal contact of SQUID ded two stripes of Litz wire

Front Ceramic Holder

- Realize the effect of cooling without Litz wire
- Design front ceramic plate with narrow opening near SQUID chip
- Direct contact with Si wafer
- Improve thermalization of SQUID without any Litz strip
- Also protect SQUID bonding

SQUID operation at 4K

with front ceramic plate

	$S_{\phi}^{1/2}$
Pulse Tube Cryocooler	~
Low-vibration Cryostat	~
LHe Dewar (in MSR)	\sim

- Fabrication of SQUID holders with polycrystalline Quartz
- Expected thermal conductivity : $\sim 1W/mK$ at 4K
- Thermalization (and operation) of SQUID with new Quartz holder will be tested soon

Front Holder

Rear Holder

Second batch of SQUID

- Same pickup coil size
- Low profile design with shorter length

Rotating Source Mass

- Need to maintain the wobble below $\sim 10 \mu m \rightarrow Position$ monitoring with two channels interferometer+Reflective index mark

- - Stability is monitored with interferometers (with reflective index on the mass)
- Characterization of magnetic field noise
 - 10µm wobble at 10Hz produce magnetic field noise of $5 \times 10^{-19} \text{T}/\sqrt{\text{Hz}}$

Rotating Drive Stage

N. Aggarwal et. al. Phys. Rev. Res. 4, 013090, (2022)

MEOP 3He Polarization Setup at Indiana Univ.

- Four 1m long pumping cells with polarization rate up to $P_{\text{max}} \approx 0.7$ for 1mbar of gas
- Pressurize up to $\approx 1 \text{ bar}$ in a storage volume with non-magnetic compressor
- Final polarization up to $P_{\rm storage} \approx 0.55$ at the storage volume
- Upgrade with modern parts

D. S. Hussey, et. al, Rev. of Sci Inst, 76(5), 053503, 2005

- Theories beyond Standard Model predict long-range, spin-dependent interactions that could be medicated by light bosons
- ARIADNE is a new experiment looking for axion mediated interaction with a resonant NMR method.
- ARIADNE could reach some of the interesting regime of parameter space corresponding to dark matter axions.
- ARIADNE plans to conduct first prototype measurement in 2025
- CAPP is actively working on the SQUID R&D for ARIADNE

Summary

"Thank you!"

*m*_a (μeV)

- Measured shielding factor of quartz tube with 250~750nm thicken of Nb sputtered layers,
- Compared with ideal shielding factor for Nb tube: $S \cdot F_{tube} = \cosh(1.84 \frac{z_0}{z})$ for a = 25 mm, $z_0 = \sim$ 150mm
- 10^8 S.F when $a \sim 14$ mm

H Fosbinder-Elkins *et al* 2022 *Quantum Sci. Technol.* **7** 014002

