

Yun Chang Shin

Center for Axion and Precision Physics Research (CAPP), Institute for Basic Science (IBS)

> *The Axion Quest Conference August 7th 2024*

Axion Resonant InterAction DetectioN Experiment (Recent Progress in ARIADNE)

On behalf of the ARIADNE Collaboration

Northwestern University, Stanford University, Indiana University, Perimeter Institute, PTB, UIUC and CAPP/IBS

Outline

- New spin-dependent interactions
- ARIADNE experiment
- SQUID development at CAPP/IBS
- Other activities in ARIADNE collaboration

Dark Matter and New Interactions

- About 96% of the Universe is filled with non-baryonic components; dark energy and dark matter
- Dark matter is not associated with Standard Model → New theory
- Theories beyond Standard Model predict weakly-coupled scalar, pseuo-scalar bosons as dark matter candidate
- Some light mass bosons may be an answer for dark matter and other fundamental physics questions: ex) axions
- Could it be associated with another, as of yet, unobserved interactions?

New spin-dependent interactions?

- Weakly-coupled, long-range interactions are a generic consequence of spontaneously broken continuous symmetries (Goldstone theorem)
	- Such boson with small enough mass have macroscopic Compton wavelength → possible to mediate new interactions in longer range.
- Specific theories (axions, extra dimensions) imply new interactions at sub-mm scales
	- Dark energy density of∼ $(1meV)^4$ order →∼ 100µm scale
- Experimental tests for new spin-dependent interactions
	- Laboratory constraints in "mesoscopic" range is less common

An example of non-standard spin-dependent interaction with spin 0 boson exchange

5

- Originated from $L_{\phi} = \psi(g_s + i\gamma_5 g_p) \psi \phi$
- **Axion mediated interaction between polarized and unpolarized objects**
- **Violates both P and T symmetry**
-
- Not very well constrained over "mesoscopic" range ($\mu m \sim mm$)

Monopole-dipole interaction mediated by axions

• **Investigated by searching for frequency shifts correlated with position of unpolarized mass**

• **Search for QCD axion from monopole-dipole interaction between Tungsten mass and polarized 3He A**xion **R**esonant **I**nter**A**ction **D**etectio**N E**xperiment (**ARIADNE**)

-
- Effective magnetic field from $U=-\vec{\mu}\cdot\vec{B}_{\textrm{eff}}$

$$
\vec{B}_{\text{eff}}=-\frac{\hbar g_s g_p}{4\gamma \pi M}\left(\frac{1}{\lambda_\phi r}+\frac{1}{r^2}\right)e^{-r/\lambda_\phi}\;\hat{r}
$$

- Independent from fermion's magnetic moment,
- not couple to the angular moment or charge
- No Maxwell equation \rightarrow can't be screened by magnetic shielding
- \bullet B_{eff} drive spin precession in a laser-polarized 3He: B_{spin}
- \boldsymbol{B} \rightarrow eff $\sim 10^{-22}T \rightarrow B$ \rightarrow spin $\sim 10^{-18}$
- **Detect NMR signal with SQUID**
- Resonant enhancement of signal with $Q \sim \omega T_2$
- **Source the axion field from local mass**: no dark matter axion required
- Potential to probe broad axion mass range: $0.1\text{meV} \leq m_a \leq 10\text{meV}$

6

A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 161801, 2014 J. Jaeckel and A. Ringward, Ann. Rev. Nucl. Part. Sci. 60, 405, 2010

ARIADNE Physics Reach

ád

• The limit of $g_s g_p$ with the given experimental condition from

$$
B_{\rm eff} \leq B_{\rm min},
$$

• The fundamental noise limit from transverse magnetization of 3 He as

$$
\sqrt{M_N^2} = \sqrt{\frac{\hbar \gamma \mu_{\text{3He}} n_s T_2}{2V}}
$$

• The minimum magnetic field from the noise becomes

$$
B_{\min} \simeq \frac{1}{p} \sqrt{\frac{2\hbar b}{n_s \mu_{^3\text{He}} T_2 V}}
$$

= 3 × 10⁻¹⁹T × $\left(\frac{1}{p}\right) \sqrt{\left(\frac{b}{1\text{ Hz}}\right) \left(\frac{1\text{mm}^3}{V}\right) \left(\frac{10^{21} \text{cm}^{-3}}{n_s}\right) \left(\frac{1000s}{T_2}\right)}$
• SNR in a measurement τ can be

$$
SNR = \frac{B_{\text{eff}} \sqrt{\tau}}{B_{\min}}
$$

• The minimum coupling constant $g_s g_p$ becomes

• SNR in a measurement τ can be

$$
SNR = \frac{B_{\text{eff}}\sqrt{\tau}}{B_{\min}}
$$

• The minimum coupling constant $g_s g_p$ becomes

$$
g_s g_p \leq \frac{\text{SNR} \times B_{\min}}{\sqrt{\tau}} \frac{4\pi M \gamma_f}{\hbar n_s} \frac{1}{\int \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \hat{r} \cdot \hat{x} dV}
$$

A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 161801, 2014

7

Experimental Design of ARIADNE **3He Sample Chamber** • Quartz block (**Northwestern**/**Stanford**) with 3He chamber of∼ 10mm × • Superconducting magnetic shield (**CAPP**/**Northwestern**/**Stanford**): ∼ **Source Mass** Nb/Gold coated **Quartz block SQUID**Cu block sample pickup coil chamber source mass Cu foil Rotating Stage (**Northwestern**): 11 segments, 10Hz, $\omega = 10\omega_{\text{rot}}$ radiation shie • Rotational Source Mass (**UIUC**): Tungsten (high nuclear density) Spin speed pattern **Rotation index**

- **Detector part**
	- Polarized 3He gas (**Indiana**): ∼ 2 × 1021/cc density
	- $3 \text{mm} \times 150 \mu \text{m}$
	- 10^8 S. F
	- SQUID (CAPP): $\sim 4 \text{fT}/\sqrt{\text{Hz}}$
- **Source Mass part**
-
-

Non-magnetic LHe Dewar

• Will be moved to Indianan University for installation of main components inside

-
-
- Wall thickness on a side to the source mass $\sim 75 \mu m$
- A sets of D coil for generating magnetic holding fields
- Nb layer with shielding factor of~ 10^8

CAPP

10 H Fosbinder-Elkins *et al* 2022 *Quantum Sci. Technol.* **7** 014002

- The SQUID needs to be placed in the 30mG of holding field
	- Ambient noise ➔ Magnetometer vs Gradiometer
- The SQUID needs to be sensitive enough to detect dipole field
	- Magnetic noise level of SQUID:∼ 4fT/ $\sqrt{\text{Hz}}$,
- The SQUID needs to be fully thermalized at 4.2K
	- Thermalization/operation of SQUID without direct contact with LHe

SQUID Development at CAPP/IBS

SQUID under the Magnetic Field

100

- Measured Displacement power spectral density with accelerometer on a low vibrational pad (LVP) at CAPP
- There exists a vibration with a level of \sim 2 nm/ \sqrt{Hz} at 100Hz
- With a size of $d = 3mm$ in SQUID pickup coil under the 30mG of holding field
	- Magnetic noise level: $\delta B \approx 2 \text{pT}/\sqrt{\text{Hz}}$
- Second order planer coaxial planner gradiometer

Optimization of SQUID Gradiometer

• SNR =
$$
\frac{\phi_g}{\sqrt{\delta \phi_n^2 + \delta \phi_v^2 + \delta \phi_q^2}}
$$

• Intrinsic noise
$$
\delta\phi_n = 1\mu\phi_0/\sqrt{\text{Hz}}
$$

\n- Vibrational noise
$$
\delta\phi_v = 1 \text{nm}/\sqrt{\text{Hz}}
$$
\n

• Quantum noise
$$
\delta \phi_q = \frac{\hbar \gamma}{2} \sqrt{\frac{n_{\text{B}}^2 \pi^2}{V}}
$$

• Relative SNR to SNR(z0=2mm, r=2.17mm)

 0.0

SNR of SQUID gradiometer

Magnetic Field Noise

$\mathbf{z_0}$ (mm)

Thin-film SQUID Gradiometer

- Prototype for test purpose
- Fabricated by Star Cryo. LLC based on CAPP design values
- Inner coil 1: $d=3.45$ mm, $t=0.05$ mm
- Inner coil $2: d=3.57$ mm, $t=0.05$ mm
- Outer coil: d=5mm, t=0.1mm
- Estimated SQUID intrinsic noise: ~ 4fT/ \sqrt{Hz}
	- Spin induced noise:~ 10fT/√Hz

SQUID Noise spectrum

- Measured in a Magnetic Shielding Room (MSR)
- Cooled SQUID with LHe
- Measured magnetic field noise level:~ 14fT/ \sqrt{Hz} at 100Hz

SQUID in the Quartz Container

- Need to cool down SQUID through contact with Quartz block
- Need to install SQUID in a very specific position
- Need to be able to swap SQUID
- SQUID holder with a material of good thermal conductivity (also nonmagnetic)

Thermal properties of materials

• Quartz (single crystal) : ∼ 200W/mK or higher

• G10 and Pyrex : ∼ 0.1W/mK

• Polycrystalline Ceramic (MACOR) : ∼ 1W/mK at 4K

D: Single-crystal; polycrystalline 80K: 120 $Wm^{-1}K^{-1}$; 4K: ~1 $Wm^{-1}K^{-1}$

E: High-purity copper (better than 99.9%), lower purity: value down to 300 $Wm^{-1}K^{-1}$

F: Warp direction (normal direction: 0.66% @ 80 K; 0.72% @ 4 K)

G: Value at 100 K

T sensor 100 **High** $\tilde{\mathbf{K}}$ 50 **Temperature T sensor Low 10**

Ceramic Holder

Ceramic Holder with SQUID

 0.0

SQUID Thermalization at 4K

Thermal contact of SQUID **In** Trig'd "N…

Front Ceramic Holder

- Realize the effect of cooling without Litz wire
- Design front ceramic plate with narrow opening near SQUID chip
- Direct contact with Si wafer
- Improve thermalization of SQUID without any Litz strip
- Also protect SQUID bonding

with front ceramic plate

SQUID operation at 4K

- Fabrication of SQUID holders with polycrystalline Quartz
- Expected thermal conductivity : ∼ 1W/mK at 4K
- Thermalization (and operation) of SQUID with new Quartz holder will be tested soon

Front Holder Rear Holder

Second batch of SQUID

- Same pickup coil size
- Low profile design with shorter length

Rotating Source Mass

-
-
-
- Need to maintain the wobble below $\sim 10 \mu m \rightarrow$ Position monitoring with two channels interferometer+Reflective index mark

Rotating Drive Stage

- -
- Source mass must be kept at a distance of 100μm from the Quartz block • Stability is monitored with interferometers (with reflective index on the mass)
	-
- Characterization of magnetic field noise
	- 10μm wobble at 10Hz produce magnetic field no

$$
\text{oise of 5} \times 10^{-19} \text{T} / \sqrt{\text{Hz}}
$$

N. Aggarwal et. al. Phys. Rev. Res. 4, 013090, (2022)

MEOP 3He Polarization Setup at Indiana Univ.

- Four 1m long pumping cells with polarization rate up to $P_{\text{max}} \approx 0.7$ for 1mbar of gas
- Pressurize up to ≈ 1 bar in a storage volume with non-magnetic compressor
- Final polarization up to $P_{\text{storage}} \approx 0.55$ at the storage volume
- Upgrade with modern parts

30 D. S. Hussey, et. al, Rev. of Sci Inst, 76(5), 053503, 2005

Summary

- Theories beyond Standard Model predict long-range, spin-dependent interactions that could be medicated by light bosons
- ARIADNE is a new experiment looking for axion mediated interaction with a resonant NMR method.
- ARIADNE could reach some of the interesting regime of parameter space corresponding to dark matter axions.
- ARIADNE plans to conduct first prototype measurement in 2025
- CAPP is actively working on the SQUID R&D for ARIADNE

"Thank you!"

m_a (µeV)

 λ (m)

- Measured shielding factor of quartz tube with 250~750nm thicken of Nb sputtered layers,
- Compared with ideal shielding factor for Nb tube: $S \cdot F_{tube} = \cosh(1.84 \frac{z_0}{a})$ \boldsymbol{a}) for $a = 25$ mm, $z_0 = ∼$ 150mm
- 10⁸ S.F when $a \sim 14$ mm

H Fosbinder-Elkins *et al* 2022 *Quantum Sci. Technol.* **7** 014002