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Dark Matter and New Interactions

About 96% of the Universe is filled with non-baryonic
components; dark energy and dark matter

Dark matter i1s not associated with Standard Model = New
theory

Theories beyond Standard Model predict weakly-coupled
scalar, pseuo-scalar bosons as dark matter candidate

Some light mass bosons may be an answer for dark matter
and other fundamental physics guestions: ex) axions

Could it be associated with another, as of yet, unobserved
Interactions?

74% Dark Energy

4% Atoms

https://physics.aps.org/articles/v11/48




New spin-dependent interactions?

®* Weakly-coupled, long-range interactions are a generic consequence of spontaneously
broken continuous symmetries (Goldstone theorem)

® Such boson with small enough mass have macroscopic Compton wavelength —
possible to mediate new interactions in longer range.

® Speclific theories (axions, extra dimensions) Imply new Iinteractions at sub-mm scales

* Dark energy density of~ (1meV)* order >~ 100um scale

®* Experimental tests for new spin-dependent interactions

® Laboratory constraints in "mesoscopic” range is less common



An example of non-standard spin-dependent
Interaction with spin 0 boson exchange

Monopole-dipole interaction mediated by axions

Ly = (gs + i¥sgp)h¢
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* Originated from Lg = J(gs + 1ys59,)YP
®* Axion mediated interaction between polarized and unpolarized objects

®* Violates both P and T symmetry
®* Investigated by searching for frequency shifts correlated with position of unpolarized mass

®* Not very well constrained over “mesoscopic” range ( Um ~ mm )
5 J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130, 1984



Axion Resonant InterAction DetectioN Experiment
ARIADNE)

arch for QCD axion from monopole-dipole interactioh between Tungsten mass“and polarized 3He
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®* Detect NMR signal with SQUID Cold DM
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® Source the axion field from local mass: no dark matter axion required

107¢ 107 1072 1 102 10* 108
m, (eV)
* Potential to probe broad axion mass range: 0.1meV <m, < 10m%V J. Jaeckel and A. Ringward, Ann. Rev. Nucl. Part. Sci. 60, 405, 2010

A. Arvanitaki and A. A. Geracl, Phys. Rev. Lett. 113, 161801, 2014



ARIADNE Physics Reach

o The limit of g.g,, with the given experimental condition from
B

eft < Brnin Force range [m]
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* The fundamental noise limit from transverse magnetization of "He as
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7 A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 161801, 2014



® Detector part

* Polarized 3He gas (Indiana): ~ 2 X 1041 /cc density

® Quartz block (Northwestern/Stanford) with 3He chamber of~ 10mm X
3mm X 150um

® Superconducting magnetic shield (CAPP/Northwestern/Stanford): ~
108S.F

®* SQUID (CAPP): ~ 41T /v Hz
®* Source Mass part

* Rotating Stage (Northwestern): 11 segments, 10Hz, w = 10wyt

®* Rotational Source Mass (UIUC): Tungsten (high nuclear density)

Experimental Design of ARIADNE

Source Mass

Nb/Gold coated
Quartz block

SQUID

/

sample pickup coil
champe

Cu foil
diation shie

Rotation index
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. Noannetic LHe Dewar made withG1O and Al, y-metal Shieldir

* Assembled at Northwestern University: Now in vacuum and coolir
* Will be moved to Indianan University for installation of main components inside
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Quartz block for 3He/SQUID

D-shape coill

1 k — F\?ed back
- —  V+
0 ) — _:i-._
[ Heater

Quartz SQUID

—Nb Layer

3He chamber

®* Assembly of multiple quartz blocks: maintained at ~4.2K

* A spheroidal chamber for 3He sample with 10mm X 3mm X 150um
* Wall thickness on a side to the source mass ~ 75um

® A sets of D coll for generating magnetic holding fields

* Nb layer with shielding factor of~ 10° e —
10 H Fosbinder-Elkins et al 2022 Quantum Sci. Technol. 7 014002




SQUID Development at CAPP/IBS

®* The SQUID needs to be placed in the 30mG of holding field
®* Ambient noise = Magnetometer vs Gradiometer

®* The SQUID needs to be sensitive enough to detect dipole field

® Magnetic noise level of SQUID:~ 4{T /v Hz,

®* The SQUID needs to be fully thermalized at 4.2K

®* Thermalization/operation of SQUID without direct contact with LHe

11



SQUID under the Magnetic Field

®* Measured Displacement power spectral

1000 — . — ——— | _ _ density with accelerometer on a low
E | | | . : vibrational pad (LVP) at CAPP

Displacement power spectral density on a LVP

® There exists a vibration with a level of ~

~ 100¢ : 2nm/+ Hz at 100Hz
T 5 5
* With a size of d = 3mm in SQUID
E 10l ) pickup coil under the 30mG of holding
£ : § field
8 ' :
% * Magnetic noise level:0B = 2pT /v Hz

® Second order planer coaxial planner
gradiometer

0.1~ e e M
1 5 10 50 100 Lg{}

f (Hz)
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Transduced Magnetic Flux

— _pems Magnetic Flux in SQUID Gradiometer
2y t ¢ I''u'u'—I—I—I—l—|—I—I—I—I—|—l—|—I—I—l—l—l—l—l—l—l—l—l—l—]
Real magnetization - } j‘:’,b | . Position q
Superconducting Magnetic Shielding \ x4 Eﬂ I .I_ .,.. i."'u - “ | 5 mm |
* Magnetic flux passing through the | zo=1.0mm | ]
pickup loop : P, — &OL ; zy=1.5mm |
-E : -, ]
: : i . y — Ipy=2.0mm 1
® The compensation coil for ~ . : — ) ]
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Optimization of SQUID Gradiometer

SNR of SQUID gradiometer

‘ SNR _ ¢g 3.5 _— [ I [ [ I [ I |r [ | I i I __
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T : - =1. :
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Magnetic Field Noise

Magnetic Noise Field of SQUID
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Zy (mm)
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Thin-film SQUID Gradiometer

®* Prototype for test purpose

®* Fabricated by Star Cryo. LLC based on CAPP design
values

® Inner coll 1: d=3.45mm, t=0.05mm

® Inner coll 2 : d=3.57mm, t=0.05mm

® Quter coll : d=5mm, t=0.1mm

* Estimated SQUID intrinsic noise: ~ 41T /VHz

® Spin induced noise:~ 10fT /v Hz f—

IBS-CAPP

- —
E‘“l[“{dr!jf“l
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 PCSQUID
Magnetic Shielding Room ' CONTROLLER SPECTURM ANALYSER

[‘ 1012

S

E
®* Measured in a Magnetic £ 10-13

. . -

Shielding Room (MSR)
®* Cooled SQUID with LHe

10~

®* Measured magnetic field noise
level:~ 14fT/+/Hz at 100Hz

— MMeasuremet 1
— Measuremet 2

— MMeasuremet 3

-

=N 1"\;*'1;-,'*-!3? 'llj'-llrr e
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QY 101 102 10%
Frequency [Hz|
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SQUID In the Quartz Container

>He chamber SQUID SQUID with Holder
Need to cool down SQUID

through contact with
Quartz block

Need to install SQUID In a
very specific position

Need to be able to swap
SQUID

)
@

\/

SQUID holder with a

material of good thermal \

conductivity (also non-
magnetic)

18
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Thermal properties of materials

T (K) Copper Aluminum  Stainless Niobium
steel 304
Young’s 300 128 70.0 194 102 38 2.9 62.6 0.38 -
modulus 80 140 76.8 208 — 41 7.6 — 5.4 —
(GPa) 4 143 79.1 204 -~ -~ -~ -~ -~ -~
Stress at 300 350 110 1.1x10° - 1.2x10° 59 - 7.5 -
0.2% strain 80 420 150 1.5x10° - 1.7x10° 21 - 83 -
(MPa) 4 -~ -~ -~ -~ -~ -~ -~ -~ -~

Thermal

conductivity

397
571

236
415

Wm K

®* Quartz (single crystal)

11370F

1576

~ ZOOW/mK or higher

® G10 and Pyrex : ~ 0.1W/mK

* Polycrystalline Ceramlc (I\/IACOR) ~ 1W/mK at 4K

D Slngle crystal polycrystallme 801( 120 Wm K‘

E: High-purity copper (better than 99.9 %), lower purlty value down to 300 Wm™ K~
F: Warp direction (normal direction: 0.66 % @ 80K; 0.72% @ 4 K)
G: Value at 100K

19 [1] J. Clarke and I. A. Braginski. The SQUID Handbook, Wiley VCH, 2004.
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Expected thermal conductivity: ~1W/m/K at 4K

Ceramic Holder

B | sensor Lo
, = -::,53“«% 54 o

Ceramic SQUID Holaer

e ¢
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Ceramic Holder with SQUID

Temperature (K)

N
(=

L)

s

Cooldown Test |

r Temperature Sensor j
10F —e— 50K Stage
4K Stage
ST —o— Ceramic High ; ;
i - Ceramic Low l :
0.0 - 0:2 - 0:4 - 016 — 0:8 | 110 1:2 1:4
Time (Days)
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SQUID Thermalization at 4K

Center for
Axion and Precision
Physics Research
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Thermal contact of SQUID

Added two stripes of Litz wire . ot

Cooldown Test -

e

100f

S0

Temperature (K)

Temperature Sensor |
10 —o— 50K Stage ' 50,04

i —u— 4K Stage
S | —— PCB on Ceramic
i -4 Pb Shield

CHE 100VEW M 1.00ms

22 Time (Days)



e Front Ceramic Holder

Axion and Precision
Physics Research

* Realize the effect of cooling
without Litz wire

* Design front ceramic plate with
narrow opening near SQUID chi

* Direct contact with SiI wafer

* Improve thermalization of SQUID
without any Litz strip

* Also protect SQUID bonding




Axion and Precision
Physics Research

SQUID operation at 4K

with front c\eramic plate

aunnnnRnnAninnsnnunannn

YO s00v T CHR 00V M1.00ms CH
B 500y G-Apr-24 0316 2104




SQUID Noise Level

Sy % (¢o/VHz) SE/2(T/\Hz)
Pulse Tube Cryocooler ~35x 107° - 10-12
Low-vibration Cryostat ~ 10 X 1076 ~ 10713
Se el ~5.0x107° ~ 1.4 x 1014

(iIn MSR)
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Material
<+ Quartz

+ Fuzed Silica

1000

10

0.100

Thermal Conductivity (W/m K)

0.001

0.1 1 10 100 1000
Temperature (K) Front Holder Rear Holder

* Fabrication of SQUID holders with polycrystalline Quartz

* Expected thermal conductivity : ~ 1W/mK at 4K
* Thermalization (and operation) of SQUID with new Quartz holder will be tested soon

206 M. Omini and A. Sparavigna, Physical Review B, 61, 6677 (2000)



Second batch of SQUID

* Same pickup coll size
* Low profile design with shorter length

27



Axion and Precision
Physics Research

Rotating Source Mass

2 4 L
Alex Brpwp 2 * 1
ab25@indiana.edu Square Mask Pattern
.005 £ .001 —={[=
| 1.49 : \/\ 0079 + .0004 Evan Weisman
| Nb/Gold coated , weismane@indiana.edu
- Quartz block !
B | .0?0
—F ¢ ] 105
DETAIL R ) l
SCALE8: 1
010 £ .001 sample pickup coil 33 : 11 sections E
: .005 £ .001 F
010  .001 ke DETAIL J | DETAIL F
SCALE 10 : 1 2 \ SCALE 6 : 1
496 DETAIL T Cu foil
SCALE 8 : 1 S "
diation shie R.5901

Dimensions: Inches ‘ /

Tolerances: .xx = 0.005, otherwise as indicated ¢. 1969+ .0004 ' R.7480 + .0004

T \ i TH —Zfﬁ 8 micro-inch finish on outer and top surfaces

The rotor has 180 Radia] Lines. There is 2 : | R.7 401 i 0004

((jaet‘-; ;?)esel;er';weg)erl"lae: gh'gg.s-inT;;?a?: laalll.ge Rotation index 9 '.4500 + .0004

degree width, and the following 179 lines have a

1 degree width and a .075 in length. The lines

begin .604 in from the center. The thickness of

— the mask is 25 microns. SCALE 2:1

1

.138 + .0004 :

®* Made with high purity Tungsten (~99.95%), magnetic impurity Va
<0.4ppm

___7/

I il
|

* 11 segments, and 200pm modulation depth, 2 x = 1

® 3.8cm outer diameter, 4mm thick Tungsten block, I]:I I |

* Need to maintain the wobble below ~ 10um = Position monitoring
with two channels interferometer+Reflective index mark

28



Axion and Precision
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Rotating Drive Stage

Rotation Test Assembly

In descending order:
e Bearing
e Backlash
Coupler
Backlash Plate
Motor
Bearing
Rod
Rotor

® Rotating stage remains at higher temperature (170K)
® located inside layers of y-metal shielding §
* Source mass must be kept at a distance of 100pm from the Quartz block 210
* Stability is monitored with interferometers (with reflective index on the mass) " | |
* Characterization of magnetic field noise Sy
* 10um wobble at 10Hz produce magnetic field noise of 5 X 10™1°T /+/Hz o+ L SZX el
29 Frequency (Hz)

N. Aggarwal et. al. Phys. Rev. Res. 4, 013090, (2022)



MEOP 3He Polarization Setup at Indiana Univ.

* Four 1m long pumping cells with polarization rate up to Py5x = 0.7 for Imbar of gas

Center for
Axion and Precision
Physics Research

® Pressurize up to = 1bar in a storage volume with non-magnetic compressor
* Final polarization up to Pstorage = 0.55 at the storage volume

®* Upgrade with modern parts

S

paJayeos’
Wwugg0T

Photodiode

3 b

—

Y

30 D. S. Hussey, et. al, Rev. of Sci Inst, 76(5), 053503, 2005
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CAPF summ ary

®* Theories beyond Standard Model predict long-range, spin-dependent
Interactions that could be medicated by light bosons

®* ARIADNE Is a new experiment looking for axion mediated interaction
with a resonant NMR method.

®* ARIADNE could reach some of the interesting regime of parameter
space corresponding to dark matter axions.

®* ARIADNE plans to conduct first prototype measurement in 2025

®* CAPP is actively working on the SQUID R&D for ARIADNE
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“Thank you!”



m, (pev)

Astrophysical limit

107* 0.001 0.010 0.100
A (m)



t :
Z0 ; .
. | A\ N
:121 Real SQUID position
a é‘\\\\\\\\\\\
ldeal position of the
SQUID
| h(1.84 20
Sk _Ht(zzzo)_COS(- a’ S.Fi4
M H(z=2z) Z1y Z1
t 1 cosh(1.847 cosh(1.843

Shielding Factor

Supercductlng Shielding

30000
25000
20000
15000}
10000}

5000}

Shielding Factor Measurement

Shielding Factor

e 250nm Integrate ¢ 750nm

400nm Integrate o cogh(1.84%) L=148.61mm, a=25mm
*  500nm )
® @ o ® o ® e
10 20 30 40

Frequency(Hz)

®* Measured shielding factor of quartz tube with 250~750nm thicken of Nb sputtered layers,
* Compared with ideal shielding factor for Nb tube: S - Fyype = cosh(1. 84 = ) fora = 25mm, zy =

150mm

® 10% S.Ewhen a ~ 14mm

34
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