Time-Varying Electric Dipole Moments and Spin-Precession Effects Induced by Axion Dark Matter

Yevgeny Stadnik

Australian Research Council DECRA Fellow

University of Sydney, Australia

"The Axion Quest" – 20th Rencontres du Vietnam, ICISE, Quy Nhon, Vietnam, 4-10 August 2024

Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter)

Low-mass Spin-0 Dark Matter **Dark Matter Pseudoscalars Scalars** (Axions): (Dilatons): $\varphi^n \xrightarrow{P} \varphi^n$, n = 1,2 $a \rightarrow -a$

Time-varying EDMs and spin-precession effects

- Co-magnetometers
 - Particle g-factors
- Spin-polarised torsion pendula
- Spin resonance (NMR, ESR)

Spatio-temporal variations of "constants"

- Atomic spectroscopy (clocks)
- Cavities and interferometers
- Torsion pendula (accelerometers)
 - Astrophysics (e.g., BBN)

Low-mass Spin-0 Dark Matter

Time-varying EDMs and spin-precession effects

- Co-magnetometers
 - Particle g-factors
- Spin-polarised torsion pendula
- Spin resonance (NMR, ESR)

More traditional axion dark matter detection methods tend to focus on the **electromagnetic** coupling

Here I focus on relatively new detection methods based on **non-electromagnetic** couplings leading to spin-based signatures

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_{f} = -\frac{\mathcal{L}_{f}}{2f_{a}} \frac{\partial_{i}[a_{0}\cos(m_{a}t - \boldsymbol{p}_{a} \cdot \boldsymbol{x})] \bar{f}\gamma^{i}\gamma^{5}f}{\uparrow}$$

 $\Rightarrow H_{\text{wind}}(t) = \boldsymbol{\sigma}_{f} \cdot \boldsymbol{B}_{\text{eff}}(t) \propto \boldsymbol{\sigma}_{f} \cdot \boldsymbol{p}_{a} \sin(m_{a}t)$

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_{f} = -\frac{\mathcal{L}_{f}}{2f_{a}} \partial_{i} [a_{0}\cos(m_{a}t - \boldsymbol{p}_{a} \cdot \boldsymbol{x})] \, \bar{f}\gamma^{i}\gamma^{5}f$$

 $\Rightarrow H_{\text{wind}}(t) = \boldsymbol{\sigma}_{f} \cdot \boldsymbol{B}_{\text{eff}}(t) \propto \boldsymbol{\sigma}_{f} \cdot \boldsymbol{p}_{a} \sin(m_{a}t)$

0

 In lab frame, apparent direction of *p*_a changes over the course of a day due to Earth's rotation

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_{f} = -\frac{\mathcal{L}_{f}}{2f_{a}} \partial_{i} [a_{0}\cos(m_{a}t - \boldsymbol{p}_{a} \cdot \boldsymbol{x})] \, \bar{f}\gamma^{i}\gamma^{5}f$$

 $\Rightarrow H_{\text{wind}}(t) = \boldsymbol{\sigma}_{f} \cdot \boldsymbol{B}_{\text{eff}}(t) \propto \boldsymbol{\sigma}_{f} \cdot \boldsymbol{p}_{a} \sin(m_{a}t)$

0

- In lab frame, apparent direction of *p*_a changes over the course of a day due to Earth's rotation
- ⟨p_a⟩ ∝ −v_{lab} on long timescales, but on shorter timescales the direction of p_a may differ from ⟨p_a⟩ due to random nature of v_{DM} (Maxwell-Boltzmann distributed)

[Centers *et al.*, *Nature Comm.* **12**, 7321 (2021)], [Lisanti *et al.*, *PRD* **104**, 055037 (2021)]

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (*P*) and time-

reversal-invariance (T) violating electric moment

Nucleons: [Graham, Rajendran, *PRD* **84**, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* **89**, 043522 (2014)]

$$\mathcal{L} = \frac{g_s^2}{32\pi^2} \frac{C_G}{f_a} a_0 \cos(m_a t) G\tilde{G} \Rightarrow \frac{d(t) \propto J \cos(m_a t)}{H_{\text{EDM}}(t) = d(t) \cdot E}$$

cf.
$$\mathcal{L} = \frac{g_s^2}{32\pi^2} \theta G \tilde{G} \implies \theta \leftrightarrow \frac{C_G}{f_a} a_0 \cos(m_a t)$$

Nucleons: [Graham, Rajendran, *PRD* **84**, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* **89**, 043522 (2014)]

$$\mathcal{L} = \frac{g_s^2}{32\pi^2} \frac{C_G}{f_a} a_0 \cos(m_a t) G\tilde{G} =$$

 $\Rightarrow \begin{array}{l} \boldsymbol{d}(t) \propto \boldsymbol{J} \cos(m_a t), \\ \\ \boldsymbol{H}_{\text{EDM}}(t) = \boldsymbol{d}(t) \cdot \boldsymbol{E} \end{array}$

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

$$\mathcal{L} = \frac{g_s^2}{32\pi^2} \frac{C_G}{f_a} a_0 \cos(m_a t) G\tilde{G} \implies \frac{d(t) \propto J \cos(m_a t)}{H_{\text{EDM}}(t) = d(t) \cdot E}$$

CP-violating intranuclear forces

In nuclei, *tree-level* CP-violating intranuclear forces dominate over *loop-induced* nucleon EDMs [loop factor = $1/(8\pi^2)$].

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff's Theorem: "In a <u>neutral</u> atom made up of <u>point-like</u> <u>non-</u> <u>relativistic</u> charged particles (interacting only <u>electrostatically</u>), the constituent EDMs are <u>screened</u> from an external electric field."

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff's Theorem: "In a <u>neutral</u> atom made up of <u>point-like</u> <u>non-</u> <u>relativistic</u> charged particles (interacting only <u>electrostatically</u>), the constituent EDMs are <u>screened</u> from an external electric field."

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff's Theorem: "In a <u>neutral</u> atom made up of <u>point-like</u> <u>non-</u> <u>relativistic</u> charged particles (interacting only <u>electrostatically</u>), the constituent EDMs are <u>screened</u> from an external electric field."

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff's Theorem: "In a <u>neutral</u> atom made up of <u>point-like</u> <u>non-</u> <u>relativistic</u> charged particles (interacting only <u>electrostatically</u>), the constituent EDMs are <u>screened</u> from an external electric field."

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!

Lifting of Schiff's Theorem

[Sandars, *PRL* **19**, 1396 (1967)], [O. Sushkov, Flambaum, Khriplovich, *JETP* **60**, 873 (1984)]

In real (heavy) atoms: Incomplete screening of external electric field due to finite nuclear size, parametrised by *nuclear Schiff moment*.

 $|\boldsymbol{S}_{\mathrm{nucl}}| \sim |\boldsymbol{d}_{\mathrm{nucl}}| \times R_{\mathrm{nucl}}^2$

Paramagnetic Atoms and Molecules [Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

CP-odd nuclear scalar polarisability arises at 2-loop level, $\mathcal{O}(A)$ enhanced Interaction of one of photons with nucleus is *magnetic* \Rightarrow no Schiff screening

polarisabilities ($\propto E \cdot B$)

CP-odd nucleon polarisabilities ($\propto E \cdot B$)

Internal nuclear excitations

Paramagnetic Atoms and Molecules [Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

CP-odd nuclear scalar polarisability arises at 2-loop level, $\mathcal{O}(A)$ enhanced Interaction of one of photons with nucleus is *magnetic* \Rightarrow no Schiff screening

For $Z \sim 80 \& A \sim 200$: $C_{SP}(\theta) \approx \left[0.1_{LO} + 1.0_{NLO} + 1.7_{(\mu-d)} \right] \times 10^{-2} \theta \approx 0.03 \theta$ $\mathcal{L}_{contact} = -G_F C_{SP} \overline{N} N \overline{e} i \gamma_5 e / \sqrt{2}, \qquad \theta \leftrightarrow C_G a_0 \cos(m_a t) / f_a$

Probes of Time-Varying EDMs and Spin-Precession Effects

Compton frequency (Hz)

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: <u>Magnetometers</u>, <u>cold/ultracold particles</u>, <u>spin pendula</u>

> Similar to previous searches for Lorentz-invariance violation using spin-polarised sources

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: <u>Magnetometers</u>, <u>cold/ultracold particles</u>, <u>spin pendula</u>

Experiment (*n*/Hg): [nEDM collaboration, *PRX* 7, 041034 (2017)]

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: <u>Magnetometers</u>, <u>cold/ultracold particles</u>, <u>spin pendula</u>

Experiment (*n*/Hg): [nEDM collaboration, *PRX* 7, 041034 (2017)]

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: <u>Magnetometers</u>, <u>cold/ultracold particles</u>, <u>spin pendula</u>

Experiment (*n*/Hg): [nEDM collaboration, *PRX* 7, 041034 (2017)]

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: <u>Magnetometers</u>, <u>cold/ultracold particles</u>, <u>spin pendula</u>

Experiment (*n*/Hg): [nEDM collaboration, *PRX* 7, 041034 (2017)]

Proposal + Experiment (\overline{p}): [BASE collaboration, *Nature* 575, 310 (2019)]

$$\left(\frac{\nu_L}{\nu_c}\right)_{\bar{p}} = \frac{|g_{\bar{p}}|}{2} + R(t)$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: <u>Magnetometers</u>, <u>cold/ultracold particles</u>, <u>spin pendula</u>

Experiment (n/Hg): [nEDM collaboration, *PRX* 7, 041034 (2017)]

Proposal + Experiment (p): [BASE collaboration, Nature 575, 310 (2019)]

Broadband Searches, $a\bar{n}n/aG\tilde{G}$, 10^{-22} eV $\leq m_a \leq 10^{-13}$ eV

Besides stored or trapped particles, can also use particle beams:

Experiment (n beam): [Schulthess et al., PRL 129, 191801 (2022)]

Proposal at ESS (n beam): [Fierlinger, Holl, Milstead, Santoro, Snow, Stadnik, arXiv:2404.15521]

Broadband Searches, $a\overline{N}N$, 10^{-16} eV $\leq m_a \leq 10^{-13}$ eV

Proposal: [Garcon et al., Quantum Sci. Technol. 3, 014008 (2018)]

"Sidebands" magnetometry technique – In the presence of a weak AC (pseudo)magnetic field, sideband features develop around the carrier frequency

Experiment (Formic acid NMR): [Garcon *et al.*, *Sci. Adv.* **5**, eaax4539 (2019)] Experiment (Hg): [nEDM collaboration, *SciPost Phys.* **15**, 058 (2023)]

Resonant Searches, $a\overline{N}N/aG\tilde{G}$, 10^{-14} eV $\leq m_a \leq 10^{-7}$ eV

In resonant-type searches, the DM-induced signal may be enhanced by up to $Q_{\rm DM} \sim 10^6$

Proposal (liquid Xe, solid-state PbTiO₃): [Budker et al., PRX 4, 021030 (2014)]

Experiment (Xe vapour): [Jiang *et al.*, *Nature Phys.* **17**, 1402 (2021)], [Bloch *et al.*, *Sci. Adv.* **8**, eabl8919 (2022)]

Traditional NMR

Radio-frequency pulse (E_{γ})

Resonance: $2\mu B_{ext} = E_{\gamma}$

Resonant Searches, $a\overline{N}N/aG\tilde{G}$, 10^{-14} eV $\leq m_a \leq 10^{-7}$ eV

In resonant-type searches, the DM-induced signal may be enhanced by up to $Q_{\rm DM} \sim 10^6$

Proposal (liquid Xe, solid-state PbTiO₃): [Budker et al., PRX 4, 021030 (2014)]

Experiment (Xe vapour): [Jiang *et al.*, *Nature Phys.* **17**, 1402 (2021)], [Bloch *et al.*, *Sci. Adv.* **8**, eabl8919 (2022)]

Traditional NMR

Dark-matter-driven NMR

Radio-frequency pulse (E_{γ})

Resonance: $2\mu B_{ext} = E_{\gamma}$

Resonance: $2\mu B_{\rm ext} \approx m_a$

Measure transverse magnetisation

Second-Order, CP-Even Effects $\mathcal{L} = \frac{g_s^2}{32\pi^2} \theta G \tilde{G}, \qquad \theta \leftrightarrow \frac{C_G}{f_a} a_0 \cos(m_a t)$

 θ -term may be absorbed into the quark mass matrix \Rightarrow Pion and nucleon masses depend on θ^2

Second-Order, CP-Even Effects $\mathcal{L} = \frac{g_s^2}{32\pi^2} \theta G \tilde{G}, \qquad \theta \leftrightarrow \frac{C_G}{f_a} a_0 \cos(m_a t)$

 θ -term may be absorbed into the quark mass matrix \Rightarrow Pion and nucleon masses depend on θ^2

$$\mathcal{L} \supset \frac{f_{\pi} \bar{g}_{\pi NN}^{(0)}}{2} \frac{m_d - m_u}{m_d + m_u} \theta^2 \overline{N} \tau^3 N \implies \delta(m_n - m_p) \approx 0.37 \theta^2 \text{ MeV}$$
Constraints on Interaction of Axion Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, *PRX* **7**, 041034 (2017)] HfF⁺ EDM constraints: [Roussy *et al.*, *PRL* **126**, 171301 (2021)] Beam EDM constraints: [Schulthess *et al.*, *PRL* **129**, 191801 (2022)] Deuteron EDM constraints: [Karanth *et al.*, *PRX* **13**, 031004 (2023)]

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hg} constraints: [nEDM collaboration, PRX 7, 041034 (2017)]
 v_{He}/v_K constraints: [Bloch *et al.*, JHEP 2020, 167 (2020); Nature Comm. 14, 5784 (2023)]
 Xe (res) constraints: [Jiang *et al.*, Nature Phys. 17, 1402 (2021)], [Bloch *et al.*, Sci. Adv. 8, eabl8919 (2022)]
 Hg sidebands constraints: [nEDM collaboration, SciPost Phys. 15, 058 (2023)]

Summary

- We have identified new signatures of axion(like) dark matter that have allowed us and other groups to improve the sensitivity to underlying interaction strengths compared with previous methods
- Novel approaches based on precision low-energy experiments (often "table-top" scale) searching for:
 - Time-varying electric dipole moments
 - Time-varying spin-precession effects
 - Varying fundamental "constants" of Nature

Back-Up Slides

Complementary Probes of Low-mass Scalars

Interconversion with ordinary particles

Larmor radiation

 $\mathcal{M} \propto g \text{ (or } g^2)$

 $\mathcal{O} \propto g^2$ (or g^4)

 $\mathcal{M} \propto g$

 $\mathcal{O} \propto g^2$

В

φ

Equivalence-Principle-Violating Forces

• Different mass-energy components of an atom generally scale differently with proton number *Z* and atomic number A = Z + N:

$$M_{\rm atom} \approx (A - Z)m_n + Zm_p + Zm_e + 100Z(Z - 1)\alpha/A^{1/3} \text{ MeV} + \cdots$$

 Different atoms and isotopes would generally experience different accelerations, implying violation of the equivalence principle

Light-shining-through-a-wall Experiments

[ALPS Collaboration, PLB 689, 149 (2010)], [OSQAR Collaboration, PRD 92, 092002 (2015)]

 $q = |\mathbf{k}_{\gamma} - \mathbf{k}_{\varphi}|$ is the momentum transfer during interconversion

$$\mathcal{L}_{\text{scalar}} \propto \varphi F_{\mu\nu} F^{\mu\nu} \propto \varphi \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \Rightarrow \text{Need } \mathbf{E}_{\gamma}^{\text{lin}} \perp \mathbf{B}$$

 $\mathcal{L}_{\text{pseudoscalar}} \propto \varphi F_{\mu\nu} \tilde{F}^{\mu\nu} \propto \varphi \boldsymbol{E} \cdot \boldsymbol{B} \Rightarrow \text{Need } \boldsymbol{E}_{\gamma}^{\text{lin}} \parallel \boldsymbol{B}$

Astrophysical Emission (Hot Media)

[Raffelt, Phys. Rept. 198, 1 (1990)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \varepsilon_{\gamma\gamma \to \varphi} \sim \frac{T^{7}}{\Lambda_{\gamma}^{2}}$$

Emission possible for $m_{\varphi} \leq \mathcal{O}(T)$

Primakoff-type conversion

Excessive energy loss via additional channels would contradict stellar models and observations

Increased heating in active stars (e.g., Sun and main sequence stars, HB stars, red giants)

$$\langle E_{\text{mech}} \rangle = \langle E_{\text{kin}} \rangle + \langle E_{\text{grav}} \rangle = \langle E_{\text{grav}} \rangle / 2 < 0$$

 $\langle E_{\text{mech}} \rangle \downarrow \Rightarrow - \langle E_{\text{grav}} \rangle / 2 = \langle E_{\text{kin}} \rangle \uparrow$

Astrophysical Emission (Hot Media)

[Raffelt, Phys. Rept. 198, 1 (1990)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \varepsilon_{\gamma\gamma\to\varphi} \sim \frac{T^7}{\Lambda_{\gamma}^2}$$

Emission possible for $m_{\varphi} \leq \mathcal{O}(T)$

Primakoff-type conversion

Excessive energy loss via additional channels would contradict stellar models and observations

Increased cooling in dead stars (e.g., white dwarves, neutron stars)

Astrophysical Emission (Compact Binaries)

[Kumar Poddar et al., PRD 100, 123923 (2019)], [Dror et al., PRD 102, 023005 (2020)]

• Scalar Larmor radiation possible if $m_{\varphi} < \Omega$ (higher-order modes also possible for an elliptical orbit if $m_{\varphi} < n\Omega$, n = 2, 3, ...):

$$\frac{dE_{\varphi}}{dt} \sim \left(\frac{m_f}{\Lambda_f}\right)^2 (aM)^2 \Omega^4 \left(\frac{Q_{\rm A}}{M_{\rm A}} - \frac{Q_{\rm B}}{M_{\rm B}}\right)^2, \text{ for } \Omega a \ll 1$$

• Dipole nature requires $Q_A/M_A \neq Q_B/M_B$, which is readily satisfied, e.g., for neutron-star/white-dwarf binary systems in the case of $f = n, e, \mu$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

Damped harmonic oscillator with a time-dependent frictional term (*H* = Hubble parameter, *a* = scale factor)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + m_{\varphi}^{2}\varphi \approx 0$ $m_{\varphi} \sim 3H(t) \sim 1/t$

Critically damped regime

t

 $\bullet t_{\rm osc}$

 $\phi_{\rm osc} \sim \phi_i$

 $3H(t_{\rm osc}) = m_{\phi}$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + m_{\varphi}^{2}\varphi \approx 0$ $m_{\varphi} \gg 3H(t) \sim 1/t$

"Vacuum misalignment" mechanism – non-thermal production, ρ_{φ} governed by initial conditions (φ_i), redshifts as $\rho_{\varphi} \propto 1$ /Volume, with $\langle p_{\varphi} \rangle \ll \rho_{\varphi}$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\rm DM,local} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

•
$$\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$$

 \downarrow
 $v_{\rm DM} \sim 300 \,\rm km/s$
 $Q_{\rm DM} \sim 10^6$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

Evolution of φ_0 with time

$$\varphi(t) \sim \sum_{i=1}^{N} \frac{\varphi_0}{\sqrt{N}} \cos\left(m_{\varphi}t + \frac{m_{\varphi}v_i^2 t}{2} + \theta_i\right)$$

 v_i follow quasi-Maxwell-Boltzmann distribution (in the standard halo model)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\rm DM,local} \approx 0.4 \, {\rm GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

Probability distribution function of φ_0 (Rayleigh distribution)

Evolution of φ_0 with time

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$

^{*} Pauli exclusion principle rules out sub-eV *fermionic* dark matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \text{ eV} \lesssim m_{\varphi} \lesssim 1 \text{ eV} \iff 10^{-7} \text{ Hz} \lesssim f_{\text{DM}} \lesssim 10^{14} \text{ Hz}$ $T_{\text{osc}} \sim 1 \text{ month}$ IR frequencies

Lyman-α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

[Related figure-of-merit: $\lambda_{dB,\varphi}/2\pi \le L_{dwarf\,galaxy} \sim 100 \,\mathrm{pc} \Rightarrow m_{\varphi} \gtrsim 10^{-21} \,\mathrm{eV}$]

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) \approx \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\rho_{\varphi} \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \lesssim 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\text{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \,\mathrm{eV} \lesssim m_{\varphi} \lesssim 1 \,\mathrm{eV} \iff 10^{-7} \,\mathrm{Hz} \lesssim f_{\mathrm{DM}} \lesssim 10^{14} \,\mathrm{Hz}$

Lyman- α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

Wave-like signatures [cf. particle-like signatures of WIMP DM]

Low-mass Spin-0 Dark Matter **Dark Matter Pseudoscalars Scalars** (Axions): (Dilatons): $\varphi^n \xrightarrow{P} \varphi^n$, n = 1,2 $a \rightarrow -a$

Time-varying EDMs and spin-precession effects

- Co-magnetometers
 - Particle g-factors
- Spin-polarised torsion pendula
- Spin resonance (NMR, ESR)

Spatio-temporal variations of "constants"

- Atomic spectroscopy (clocks)
- Cavities and interferometers
- Torsion pendula (accelerometers)
 - Astrophysics (e.g., BBN)

Dark Matter

QCD axion resolves strong CP problem

Time-varying EDMs and spin-precession effects

- Co-magnetometers
 - Particle g-factors
- Spin-polarised torsion pendula
- Spin resonance (NMR, ESR)

More traditional axion dark matter detection methods tend to focus on the **electromagnetic** coupling

Here I focus on relatively new detection methods based on **non-electromagnetic** couplings leading to spin-based signatures

Compton frequency (Hz)

Broadband Searches, $a\bar{e}e$, 10^{-23} eV $\leq m_a \leq 10^{-18}$ eV

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Lorentz-invariance-violation-type searches: Magnetometers, cold/ultracold particles, <u>spin pendula</u>

Experiment (Alnico/SmCo₅): [Terrano et al., PRL 122, 231301 (2019)]

Resonant Searches, $a\bar{e}e$, $10^{-7}eV \le m_a \le 10^{-4}eV$

In resonant-type searches, the DM-induced signal may be enhanced by up to $Q_{\rm DM} \sim 10^6$

Proposals (ESR): [Krauss, Moody, Wilczek, Morris, HUTP-85/A006 (1985)], [Raffelt, MPI-PAE/PTh 86/85 (1985)], [Barbieri, Cerdonio, Fiorentini, Vitale, *PLB* 226, 357 (1989)], [Caspers, Semertzidis, *Proceedings of the Workshop on Cosmic Axions*, 1990], [Kakhidze, Kolokolov, Sov. Phys. JETP 72, 598 (1991); Vorob'ev, Kakhidze, Kolokolov, Phys. Atom. Nuclei 58, 959 (1995)], [Barbieri et al., Phys. Dark Universe 15, 135 (2017)]

- YIG [INFN]: [Crescini et al., EPJ C 78, 703 (2018); PRL 124, 171801 (2020)]
- YIG [UWA]: [Flower, Bourhill, Goryachev, Tobar, Phys. Dark Universe 25, 100306 (2019)]

Spatio-temporal variations

of "constants"

- Atomic spectroscopy (clocks)
- Cavities and interferometers
- Torsion pendula (accelerometers)
 - Astrophysics (e.g., BBN)

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' = -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f}\bar{f}f$$

 φ^2 interactions also exhibit the same oscillating-in-time signatures as above (except at frequency $2m_{\varphi}$), as well as ...

* φ^2 interactions may arise in models with a Z_2 symmetry ($\varphi \rightarrow -\varphi$)
Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^2}{\left(\Lambda_{\gamma}'\right)^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' = -\frac{\varphi^2}{\left(\Lambda_{f}'\right)^2} m_f \bar{f}f$$
 \Rightarrow $\begin{cases} \frac{\Delta\alpha}{\alpha} \propto \frac{\Delta m_f}{m_f} \propto \Delta\rho_{\varphi} \propto \Delta\varphi_0^2 \\ \frac{\Delta\alpha}{m_f} \approx \frac{\omega}{m_f} \approx \frac{\omega}{m_f} \approx \frac{\omega}{m_f} \end{cases}$

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \\
\mathcal{L}_{f}' = -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f} \bar{f} f \end{cases} \Rightarrow \begin{cases} \frac{\Delta \alpha}{\alpha} \propto \frac{\Delta m_{f}}{m_{f}} \propto \Delta \rho_{\varphi} \propto \Delta \varphi_{0}^{2} \\
\delta m_{\varphi}(\rho_{\text{matter}}) \\
\downarrow \end{cases}$$

Screening of φ field in and around matter if $\delta m_{\varphi} > 0$

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\varphi \overline{X}X$)

 $\Box \varphi + m_{\varphi}^2 \varphi = \pm \kappa \rho$ Source term

Profile outside of a spherical body

Fifth Forces: Linear vs Quadratic Couplings

Gradients + amplification/screening

Fifth Forces: Linear vs Quadratic Couplings

Gradients + amplification/screening

Gradients + amplification/screening

Fifth Forces: Linear vs Quadratic Couplings

Fifth Forces: Linear vs Quadratic Couplings

Probes of Oscillating Fundamental Constants **10**⁻¹⁹ 10^{-15} 10^{-23} 10^{-11} 10^{-7} Scalar mass (eV/c^2) Atomic spectroscopy (clocks) Cavities Atom interferometry Optical interferometry **10⁻⁹ 10**³ **10**⁷ 10^{-1} 10^{-5}

Compton frequency (Hz)

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

Atomic spectroscopy (including clocks) has been used for decades to search for "slow drifts" in fundamental constants **Recent overview:** [Ludlow, Boyd, Ye, Peik, Schmidt, *Rev. Mod. Phys.* 87, 637 (2015)]

"Sensitivity coefficients" K_X required for the interpretation of experimental data have been calculated extensively by Flambaum group
 Reviews: [Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$\frac{\nu_{\rm opt,1}}{\nu_{\rm opt,2}} \propto \frac{\left(m_e e^4/\hbar^3\right) F_{\rm rel,1}^{\rm opt}(Z\alpha)}{\left(m_e e^4/\hbar^3\right) F_{\rm rel,2}^{\rm opt}(Z\alpha)}$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$\nu_{\text{opt}} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\text{rel}}^{\text{opt}}(Z\alpha)$$
$$\frac{\nu_{\text{opt,1}}}{\nu_{\text{opt,2}}} \propto \frac{\left(m_e e^4/\hbar^3\right) F_{\text{rel,1}}^{\text{opt}}(Z\alpha)}{\left(m_e e^4/\hbar^3\right) F_{\text{rel,2}}^{\text{opt}}(Z\alpha)}$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

$$|\boldsymbol{p}_e|_{\text{near nucleus}} \sim Z \alpha m_e c$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

For transitions between closely spaced energy levels that arise due to the near cancellation of contributions of different nature, the K_{α} sensitivity coefficients can be greatly enhanced, e.g.:

- $-|K_{\alpha}(Cf^{15+})| \approx 50$ [Dzuba *et al.*, *PRA* **92**, 060502(R) (2015)]
- $|K_{\alpha}(^{229}\text{Th})| \sim 10^4$ [Flambaum, *PRL* **97**, 092502 (2006)]

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$\nu_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$
$$K_{\alpha}({\rm H}) = 2.0, K_{\alpha}({\rm Rb}) = 2.3, K_{\alpha}({\rm Cs}) = 2.8$$
Increasing Z

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$\bullet K_{m_e/m_N} = 1$$

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$

 $K_{\alpha}(H) = 2.0, K_{\alpha}(Rb) = 2.3, K_{\alpha}(Cs) = 2.8$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$K_{m_e/m_N} = 1$$

$$\nu_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu \longleftarrow K_{m_q/\Lambda_{\rm QCD}} \neq 0$$

$$K_{\alpha}(H) = 2.0, K_{\alpha}(Rb) = 2.3, K_{\alpha}(Cs) = 2.8$$

Increasing Z

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

- Dy/Cs [Mainz]: [Van Tilburg et al., PRL 115, 011802 (2015)], [Stadnik, Flambaum, PRL 115, 201301 (2015)]
 - Rb/Cs [SYRTE]: [Hees et al., PRL 117, 061301 (2016)], [Stadnik, Flambaum, PRA 94, 022111 (2016)]
 - Al⁺/Yb, Yb/Sr, Al⁺/Hg⁺ [NIST + JILA]: [BACON Collaboration, *Nature* **591**, 564 (2021)]
 - Yb/Cs [NMIJ]: [Kobayashi *et al.*, *PRL* **129**, 241301 (2022)]
 - Yb⁺(E3)/Sr [PTB]: [Filzinger et al., PRL 130, 253001 (2023)]

Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

Solid material

 $L_{\text{solid}} \propto a_{\text{B}} = 1/(m_e \alpha)$ $\Rightarrow \nu_{\text{solid}} \propto 1/L_{\text{solid}} \propto m_e \alpha$ (adiabatic regime) Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Stadnik, Flambaum, PRL **114**, 161301 (2015); PRA **93**, 063630 (2016)]

- Sr vs Glass cavity [Torun]: [Weislo et al., Nature Astronomy 1, 0009 (2016)]
- Various combinations [Worldwide]: [Wcislo et al., Science Advances 4, eaau4869 (2018)] ٠
 - Cs vs Steel cavity [Mainz]: [Antypas et al., PRL 123, 141102 (2019)]
 - Sr/H vs Silicon cavity [JILA + PTB]: [Kennedy et al., PRL 125, 201302 (2020)] ٠
 - Sr⁺ vs Glass cavity [Weizmann]: [Aharony et al., PRD 103, 075017 (2021)]
 - H vs Sapphire/Quartz cavities [UWA]: [Campbell et al., PRL 126, 071301 (2021)] ٠

Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

Small-scale experiment currently under development at Northwestern University

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson interferometer (GEO600)

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$

First results recently reported using GEO600 and Fermilab holometer data: [Vermeulen *et al.*, *Nature* 600, 424 (2021)], [Aiello *et al.*, *PRL* 128, 121101 (2022)]

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

- Geometric asymmetry from beam-splitter: $\delta(L_x L_y) \sim \delta(nl)$
- Both broadband and resonant narrowband searches possible: $f_{\rm DM} \approx f_{\rm vibr,BS}(T) \sim v_{\rm sound}/l \Rightarrow Q \sim 10^6$ enhancement

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Atom Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Graham, Hogan, Rajendran, Van Tilburg, PRD 97, 075020 (2018)]

AlON-10 experiment under construction at Oxford [Badurina *et al.*, *JCAP* **05** (2020) 011] MAGIS-100 experiment under construction at Fermilab [Abe *et al.*, QST **6**, 044003 (2021)]

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)], [*PRL* **130**, 253001 (2023)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

5 orders of magnitude improvement!

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)], [*PRL* **130**, 253001 (2023)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

5 orders of magnitude improvement!

BBN Constraints on 'Slow' Drifts in Fundamental Constants due to Dark Matter [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest $\rho_{\rm DM}$)
- Big Bang nucleosynthesis ($t_{\text{weak}} \approx 1 \text{ s} t_{\text{BBN}} \approx 3 \text{ min}$)
- Primordial ⁴He abundance sensitive to n/p ratio (almost all neutrons bound in ⁴He after BBN)

Constraints on Scalar Dark Matter with $\varphi^2 F_{\mu\nu} F^{\mu\nu} / 4 (\Lambda'_{\gamma})^2$ Coupling

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

15 orders of magnitude improvement!

Constraints on Scalar Dark Matter with $\varphi^2 F_{\mu\nu} F^{\mu\nu} / 4 (\Lambda'_{\gamma})^2$ Coupling

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

15 orders of magnitude improvement!

