

Lattice calculation of neutron electric dipole moment

③ 国立大学法人奈良女子大学 生活環境学部 **④** 国立大学法人奈良女子大学 生活環境学部

Nara Women's University

In collaboration with M. Abramczyk, T. Blum, T. Izubuchi, Fangcheng He and S. Syritsyn

The Axion Quest 2024, 20th Rencontres du Vietnam Quy Nhon, August 8, 2024

Outline

- Introduction : Current status of Lattice EDM calculations
- Our Results
- Summary

Nucleon EDM Experiments

Recent nEDM limits:

 $d_n < 2.9 \times 10^{-26} e \cdot cm$ C. A. Baker, Phys. Rev. Lett. 97(2006) $d_n < 1.6 \times 10^{-26} e \cdot cm$ B. Graner, Phys. Rev. Lett. 116(2016) $d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cm$

C. Abel et al, Phys. Rev. Lett. 124(2020)

SM prediction
$$|d_n| \sim 10^{-31} e \cdot cm.$$

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]

Role of (lattice) QCD : connect quark/gluon-level (effective) operators to hadron/nuclei matrix elements and interactions (Form factor, dn) Non-perturbative determination is important → Lattice QCD calculation

Effective CPV operators

$$\begin{split} \mathcal{L}_{eff}^{\mathcal{CP}} = & \frac{g_s^2}{32\pi^2} \bar{\theta} G_{\mu\nu} \tilde{G}^{\mu\nu} & \text{dim=4, } \theta_{QCD} \\ & - \frac{i}{2} \sum_{i=e,u,d,s} d_i \bar{\psi}_i F \cdot \sigma \gamma_5 \psi_i & \text{dim=5, e, quark E} \\ & - \frac{i}{2} \sum_{i=u,d,s} \tilde{d}_i \bar{\psi}_i G \cdot \sigma \gamma_5 \psi_i & \text{dim=5, chromo E} \\ & + \omega f^{abc} G_{\mu\nu,a} G^{\mu\beta,b} G^{\nu,c}_{\ \beta} & \text{dim=6, Weinberg} \\ & + \sum C_i^{(4q)} \mathcal{O}_i^{(4q)} & \text{dim=6, Four-quark E} \end{split}$$

im=5, e, quark EDM

m=5, chromo EDM

m=6, Weinberg three gluon

m=6, Four-quark operators

Effective CPV operators

$$\mathcal{L}_{eff}^{CP} = \frac{g_s^2}{32\pi^2} \bar{\theta} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

dim=4, θ_{QCD}

• Why $\bar{\theta} \leq \mathcal{O}(10^{-10})$? \rightarrow Strong CP problem

- A dynamical solution : PQ symmetry ($\theta \rightarrow 0$ and Axion)
- Other dynamical solutions?
 - c.f. Conceptional discussions of "un-observability" of topological charges.
 - e.g., Topological charge decouples to hadron correlation functions in infinite volume limit? [G. Schierholz, 2024].

 \rightarrow Lattice QCD are important to confirm the problem and to constrain θ .

Lattice QCD : First principle calculation of QCD [Wilson, '74]

1.Generate samples of vacuum, typically O(10)-O(1,000) samples of gauge configurations U_µ(n).

$$\{C^0\} \to \{C^1\} \to \cdots \to \{C^{i-1}\} \to \{C^i\} \to \cdots \to \{C^N\}$$

Thermalized configurations

2. Then measure physical observables on the vacuum ensemble (important sampling)

$$\langle \mathcal{O} \rangle = \frac{\int dU \mathcal{O}(U) e^{-S(U)}}{\int dU e^{-S(U)}} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(U_i)$$

Calculation of θ EDM on the lattice

Re-weighting method [S. Aoki et al. (2005); F. Berruto et al (2005), ...]

$$e^{-S_{QCD}-i\theta Q} = e^{-S_{QCD}} \left[1 - i\theta Q + \mathcal{O}(\theta^2)\right]$$

$$\langle \mathcal{O} \rangle_{\mathcal{GP}} = \langle \mathcal{O} \rangle_{CP-even} - i\theta \langle Q \cdot \mathcal{O} \rangle_{CP-even} + \mathcal{O}(\theta^2)$$

(CP-even)

(CP-odd)

CPV operator : Q, cEDM, etc..., $|\theta| << 1$

Original (CP-even) gauge configurations can be used. No sign problem. CP-odd Nucleon Structure on a Lattice (I)

c.f. Dynamical simulation including CP-odd interactions

[R. Horsley et al. (2008); H. K. Guo, et al., 2015)]

$$\langle \mathcal{O} \rangle_{\theta}^{Q \dots Q} = \int \mathcal{O} U(\mathcal{O}) e^{-even S_{\overline{Q}}} i\theta \langle \mathcal{Q} - \theta \rangle_{maig}^{Q} Q^{-even} + O(\theta^2)$$

Need additional simulation for ensemble generations to get non-zero topological sector. Better sampling of non-zero Q sector. Check linearity of θ (ensemble generation for various maginary θ)

Example of Monte Carlo simulation of QCD vacuum

QCD non-trivial topological vacuum: source of CPV

(Courtesy of Derek Leinweber, CSSM, University of Adelaide)

Q (topological charge) in lattice Monte Carlo history (RBC /UKQCD collaboration) Nf=2+1 DWF, $m\pi$ =290-420 MeV

Extraction of nucleon EDM

Form factor method

[Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)]

Form factor is widely used to extract EDM,

one need to calculate the "3pt correlation function" with topological charge.

Electric dipole moment ($Q^2 \rightarrow 0$ extrapolation)

$$d_n = \lim_{Q^2 \to 0} \frac{F_3(Q^2)}{2m_N}$$

electric magnetic current

$$(q = p' - p, Q^2 = -q^2)$$

Extraction of nucleon EDM

Form factor method

[Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)]

Form factor is widely used to extract EDM,

one need to calculate the "3pt correlation function" with topological charge.

$$\langle N[\bar{q}\gamma^{\mu}q]\bar{N}\rangle_{\mathcal{G}^{p}} = \frac{1}{Z}\int \mathscr{D}U \,\mathscr{D}\bar{\psi}\mathscr{D}\psi N[\bar{q}\gamma^{\mu}q]\bar{N}e^{-S-iS_{\theta}} \qquad S_{\theta} = \frac{\theta}{32\pi^{2}}\int d^{4}xTr[G_{\mu\nu}(x)\tilde{G}^{\mu\nu}(x)]$$

$$\langle p', \sigma'|J^{\mu}|p, \sigma\rangle = \bar{u}_{p}, \sigma' \underbrace{F_{1}(Q^{2})\gamma^{\mu}}_{Dirac} \underbrace{F_{2}(Q^{2})}_{Dirac} \underbrace{i\sigma^{\mu\nu}q_{\nu}}_{2m_{N}} - F_{3}(Q^{2}) \underbrace{\gamma_{5}\sigma^{\mu\nu}q_{\nu}}_{2m_{N}} u_{p,\sigma}$$

$$= \lim_{Q^{2}\to 0} \underbrace{F_{3}(Q^{2})}_{2m_{N}} \underbrace{f_{3}(Q^{2})}_{2m_{N}} \underbrace{f_{3}(Q^{2})}_{0.04} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.02} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.02} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.02} \underbrace{f_{3}}_{0.00} \underbrace{f_{3}}_{0.04} \underbrace{f_{3}}_{0.02} \underbrace{f_{3}}_{0.04} \underbrace{$$

[S. Syritsyn et al. (2048)]

Extraction of nucleon EDM

Form factor method

[Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)]

Form factor is widely used to extract EDM,

one need to calculate the "3pt correlation function" with topological charge.

[S. Syritsyn et al. (2018)]

Problem: Prior to 2017, a spurious mixing between EDM and magnetic moments in all previous lattice computations of nucleon form factor.

Spurious mixing problem

[M. Abramczyk, et al. Phys.Rev.D 96 (2017)]

CP violating interaction induces a chiral phase : $\langle 0|N|p,\sigma\rangle_{CP} = e^{i\alpha\gamma_5}u_{p,\sigma} = \tilde{u}_{p,\sigma}$

 $ilde{u}_p$ is a solution spinor of the free Dirac equation in : $(p\!\!/ - m_N e^{-2ilpha\gamma_5}) ilde{u}_p = 0$

a is mixing angle (CP-violating mass correction)

This mixing angle α has to be calculated, and rotated away to obtain "net" CP-violation effect.

$$\bar{\tilde{\boldsymbol{u}}}_{\boldsymbol{p}',\boldsymbol{\sigma}'} \left[\tilde{F}_1 \gamma^{\mu} + (\tilde{F}_2 + i\tilde{F}_3 \gamma_5) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} \right] \tilde{\boldsymbol{u}}_{\boldsymbol{p},\boldsymbol{\sigma}} \equiv \bar{u}_{\boldsymbol{p}',\boldsymbol{\sigma}'} \left[F_1 \gamma^{\mu} + (F_2 + iF_3 \gamma_5) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} \right] u_{\boldsymbol{p},\boldsymbol{\sigma}}$$

[Previous "lattice" parametrization prior to 2017]

$$(F_2 + iF_3\gamma_5) = e^{2i\alpha\gamma_5}(\tilde{F}_2 + i\tilde{F}_3\gamma_5) \quad \rightleftharpoons \qquad [F_2]_{\text{correct}} = \tilde{F}_2 + \mathcal{O}(\alpha^2)$$
$$[F_3]_{\text{correct}} = \tilde{F}_3 + 2\alpha F_2$$

Spurious mixing problem

[M. Abramczyk, et al. Phys.Rev.D 96 (2017)]

CP violating interaction induces a chiral phase : $\langle 0|N|p,\sigma\rangle_{CP} = e^{i\alpha\gamma_5}u_{p,\sigma} = \tilde{u}_{p,\sigma}$

 $ilde{u}_p$ is a solution spinor of the free Dirac equation in : $(p\!\!/ - m_N e^{-2ilpha\gamma_5}) ilde{u}_p = 0$

a is mixing angle (CP-violating mass correction)

This mixing angle α has to be calculated, and rotated away to obtain "net" CP-violation effect.

$$\bar{\tilde{\boldsymbol{u}}}_{\boldsymbol{p}',\boldsymbol{\sigma}'} \left[\tilde{F}_1 \gamma^{\mu} + (\tilde{F}_2 + i\tilde{F}_3 \gamma_5) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} \right] \tilde{\boldsymbol{u}}_{\boldsymbol{p},\boldsymbol{\sigma}} \equiv \bar{u}_{\boldsymbol{p}',\boldsymbol{\sigma}'} \left[F_1 \gamma^{\mu} + (F_2 + iF_3 \gamma_5) \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} \right] u_{\boldsymbol{p},\boldsymbol{\sigma}}$$

[Previous "lattice" parametrization prior to 2017]

$$(F_2 + iF_3\gamma_5) = e^{2i\alpha\gamma_5}(\tilde{F}_2 + i\tilde{F}_3\gamma_5) \quad \checkmark \qquad [F_2]_{\text{correct}} = F_2 + \mathcal{O}(\alpha^2)$$
$$[F_3]_{\text{correct}} = \tilde{F}_3 + 2\alpha F_2$$

Form factor method with imaginary θ simulation [₱5/₲60 et al., PRL 115, no.6, 062001 (2015)]

Recent lattice results for θ-induced nEDM (after 2017)

Lattice	Neutron EDM [e fm]	Proton EDM [e fm]
Dragos et al $[2019]$	$d_n/\theta = -0.00152(71)$	$d_p/\theta = 0.0011(10)$
Alexandrou et al $[2020]$	$ d_n/\theta = 0.0009(24)$	
Bhattacharya et al $[2021]$	$d_n/\theta = -0.003(7)(20)$	$d_p/\theta = 0.024(10)(30)$
Liang et al $[2023]$	$d_n/\theta = -0.00148(14)(31)$	$d_p/\theta = 0.0038(11)(8)$

Phenomenology	method	Neutron EDM [e fm]
Pospelov et al [2000]	ChPT/NDA	~ 0.002
Pospelov et al $[1999]$	QCD sum rules	0.0025(13)
Hisano et al $[2012]$	QCD sum rules	0.0004^{+3}_{-2}
Ema et al $[2024]$	QCD sum rules	$0.0005 \sim 0.0015$
		▲

Re-analysis using "correct" nucleon operators from which unphysical chiral phase decouples.

Using the correct definition of F_3 , the lattice results are more comparable with the phenomenological results but with huge errors.

 \rightarrow Need to improve the signals.

Our results

Nf=2+1 (Mobius) Domain wall fermion (chiral symmetry on the

lattice)

Iwasaki gauge action

Ensemble	Lattice size	Lattice spacing	Statistics	Pion mass
24I_005	24 ³ x 64	0.1105fm	100cfgs	340MeV
24I_010	24 ³ x 64	0.1105fm	1100cfgs	420MeV

All-mode and low-mode averaging techniques¹⁷ for measurements

2pt with exact solver	1
2pt with sloppy solver	64
low mode all to all 2pt	Volume

Background electric field method

W. Detmold, B. Tiburzi and A. Walker-Loud, Phys.Rev.D81(2010)

•Uniform electric field preserving translational invariance and periodic boundary conditions on a lattice (Euclidean imaginary electric field)

- •No sign problem: analytic continuation of CP-odd interaction
- •Neutron energy shift in background electric field $\Delta E = d_n \vec{S} \cdot \vec{\epsilon}$

Lattice EDM with b.g. electric field

 The EDM can be extracted from the energy shift of 2pt in the background electric field

• 2pt nucleon correlation functions with topological charge

$$C_{2\text{pt},\vec{E}}^{Q}(0,t) = \sum_{\vec{y}} \langle N(\vec{y},t) \left(\sum_{\tau_q=0}^{T} \sum_{\vec{x}} [q(\vec{x},\tau_q)] \right) \bar{N}(\vec{0},0) \rangle_{\vec{E}}$$

• The extraction of EDM

$$d_n \propto \frac{\text{Tr}[\Sigma_Z C^Q_{2pt,\vec{E}}(0,t_f)]}{\text{Tr}[C_{2pt,\vec{E}}(0,t_f)]} - \frac{\text{Tr}[\Sigma_Z C^Q_{2pt,\vec{E}}(0,t_f-1)]}{\text{Tr}[C_{2pt,\vec{E}}(0,t_f-1)]}$$

Feynman-Hellman (FH) theorem

C. Bouchard, et al., PRD96(2017)

• The matrix elements can be related to the energy shift through FH theorem

2pt correlation function
$$C_{\lambda}(t) = \langle \lambda | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | \lambda \rangle = \frac{1}{\mathcal{Z}_{\lambda}} \int D\Phi e^{-S-S_{\lambda}} \mathcal{O}(t) \mathcal{O}^{\dagger}(0)$$
FH theorem
$$\frac{dE(\lambda)}{d\lambda} \Big|_{\lambda=0} = \left\langle N \left| \frac{d\hat{H}(\lambda)}{d\lambda} \right| N \right\rangle$$

• EDM using FH theorem

Nucleon Energy shift m

 $m^{e\!f\!f} = m + \theta d_n^{ heta} \vec{\sigma} \cdot \vec{\epsilon}$

EDM can be obtained from the matrix element

$$d_n^{\theta} \epsilon_z = \langle N \uparrow | \sum_{\vec{x}} q(\vec{x}) | N \uparrow \rangle_E$$

 d_n from global topological charge

 $d_{\!n}\,$ from local topological charge density operator

$$Q \sim \int_{V_4} G \tilde{G}, \quad \langle Q^2 \rangle \sim V_4 \quad \rightarrow \text{ (Statistical error)}^2 \propto V_4$$

Signal can be improved.

Results of nEDM

 Comparison of results obtained using local and global topological charge

The results obtained using the local operator have much better signal

Topological charge from quark loop

Gluonic definition:
$$\rho_G(x) = \frac{1}{16\pi^2} \operatorname{Tr} \left[G_{\mu\nu} \tilde{G}^{\mu\nu} \right]_x$$

Fermionic definition: $\rho_F(x) = -m_q J_A(x) = -m_q \operatorname{Tr} \left[\gamma_5 D^{-1}(x, x) \right]$

Index Theorem for Dirac operator: $Q_{top} \equiv Q_G = Q_F$ Thanks to lattice chiral symmetry

$$Q_G = \sum_x \rho_Q(x), \ Q_F = \sum_x \rho_F(x)$$

The top charge Q_F with different m_f is consistent.

Results of nEDM

 The comparison of EDMs obtained using topological charge defined by gluon field and quark loop

The results using the topological charge defined by quark loop have better signals.

Summary

We test a new method: matrix elements with b.g. electric field, and fermionic

definition of topological charge, has better signals and more stable plateau.

So far the lattice results for neutron θ EDMs are consistent with model analyses.

Constrain θ-nEDM at physical point is challenging, which will require order of

magnitude accumulation of statistics (huge computational effort), and/or alternative

noise reduction techniques (chiral basis dependent effect? c.f. [Ema et al. (2024)])

 \rightarrow Constraint relaxation on θ parameter or No strong CP problem?

Thank you

$heta_{QCD}$ induced Nucleon EDMs

Phenomenological estimates

Lattice calculations

All mode average (AMA) and low mode average (LMA)

[T. Blum, T. Izubuchi and E. Shintani, Phys. Rev. D 88 (2013)]

Gauge ensembles	24I_010		
2pt with exact solver	1		
2pt with sloppy solver	64		
low mode all to all 2pt	Volume		

$$\langle \mathcal{O}_{AMA} \rangle = \frac{1}{N_{ex}} \langle \mathcal{O}_{ex} \rangle - \frac{1}{N_{ex}} \langle \mathcal{O}_{sl} \rangle + \frac{1}{N_{sl}} \langle \mathcal{O}_{sl} \rangle \qquad (N_{sl} \gg N_{ex})$$

The signal can be significantly enhanced after using AMA and LMA.

Reanalysis of "lattice" θ induced EDM

Correction is simple:
$$[F_3]_{\text{correct}} = \tilde{F}_3 + 2\alpha F_2$$

Correction made by ourselves

		$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	F_2	α	\tilde{F}_3	F_3
$\operatorname{Ref}[1]$	n	373	1.216(4)	-1.50(16)	-0.217(18)	-0.555(74)	0.094(74)
$\operatorname{Ref}[2]$	n	530	1.334(8)	-0.560(40)	-0.247(17)	-0.325(68)	-0.048(68)
	p	530	1.334(8)	0.399(37)	-0.247(17)	0.284(81)	0.087(81)
$\operatorname{Ref}[3]$	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
$\operatorname{Ref}[4]$	n	465	1.246(7)	-1.491(22)	-0.079(27)	-0.375(48)	-0.130(76)
	n	360	1.138(13)	-1.473(37)	-0.092(14)	-0.248(29)	0.020(58)

Ref[1] : C. Alexandrou et al., Phys. Rev. D93, 074503 (2016), Ref[2] : E. Shintani et al., Phys.Rev. D72, 014504 (2005). Ref[3] : F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys.Rev. D73, 054509 (2006) Ref[4] : F. K. Guo et al., Phys. Rev. Lett. 115, 062001 (2015).

The lattice results are consistent with phenomenological estimates. After removing spurious contributions, no signal of EDM. How to improve the signal?

The extraction of gradient flow diffusion effect

The diffusion effect in the gradient flow

 $\tilde{q}(t_2^{gf};\tau) = \int dt' K(t_2^{gf} - t_1^{gf}; |\tau - \tau'|) \tilde{q}(t_1^{gf}; \tau') \xrightarrow{\text{Fourier}} \tilde{q}(t_2^{gf}; \omega) = K(t_2^{gf} - t_1^{gf}; \omega) \tilde{q}(t_1^{gf}; \omega)$

The diffusion kernel can be extracted through

- The noise is suppressed at larger gradient flow time.
- The plateau will be shifted due to the diffusion.

3pt function with topological charge density in the presence of background electric field

Consider 3-pt functions of topological charge density

$$\Delta C_{3pt}(\tau, \vec{\mathcal{E}}) = \langle \hat{N}(T)\bar{Q}(\tau)\bar{N}(0)\rangle_{\vec{\mathcal{E}}}, \quad (0 < \tau < T)$$

Performing the spectral decomposition

$$\begin{aligned} \Delta C_{3pt}(\tau, \vec{\mathcal{E}}) = &\langle \hat{N}(T)\bar{Q}(\tau)\bar{\hat{N}}(0)\rangle_{\vec{\mathcal{E}}} \sim \sum_{n,m} e^{-E_n(T-\tau)-E_m\tau} \langle 0|\hat{N}|n, \mathcal{E}\rangle \langle n, \mathcal{E}|\bar{Q}|m, \mathcal{E}\rangle \langle m, \mathcal{E}|\bar{\hat{N}}|0\rangle \\ = &|Z_N|^2 e^{-m_N T} \langle N_+, \mathcal{E}|\bar{Q}|N_+, \mathcal{E}\rangle + (\text{excited states}) \end{aligned}$$

 $|N_+,\mathcal{E}
angle$: ground state nucleon in the presence of b.g. electric field

This matrix element can be non-zero due to non-zero electric field, which corresponds to the energy shift (δE)

$$\langle N_+, \mathcal{E} | \bar{Q} | N_+, \mathcal{E} \rangle = \delta E = d_n \times \vec{\Sigma} \cdot \vec{\mathcal{E}}$$

c.f. 1st order energy correction in the perturbation theory of quantum mechanics $\hat{H} = \hat{H}_0 + \delta \hat{H}, \quad \delta E_n = \langle n | (\delta \hat{H}) | n \rangle$

More details on Perturbative analysis with background electric field

[G. Baym, and H. Beck, PNAS 7438, 113, 27, 2016]

State mixing due to electric field (without CP-odd operator)

$$|N_+,\mathcal{E}\rangle = |N_+,0\rangle + \vec{\mathcal{E}} \cdot \vec{D}|N_-,0\rangle + \cdots$$

 $\vec{D} = \frac{e}{2m_{N-}(m_{N-}-m_{N+})} \int dx^3 \vec{x} \langle N^-, 0 | \rho_{EM}(x) | N^+, 0 \rangle \qquad \text{(expectation value of the dipole operator)}$ $\rho_{EM} = \frac{2}{3} \bar{u} \gamma_0 u(x) - \frac{1}{3} \bar{d} \gamma_0 d(x)$

(c.f. 1st order state mixing in quantum mechanics)

Ground state nucleon (originally P-even) can mix with the negative parity nucleon (N-)

$$\langle N_+, \mathcal{E} | \bar{Q} | N_+, \mathcal{E} \rangle = \langle N_+, 0 | \bar{Q} | N_+, 0 \rangle \leftarrow \text{zero due to P Sym.}$$

 $+ \vec{\mathcal{E}} \cdot \vec{D} \langle N_+, 0 | \bar{Q} | N_-, 0 \rangle + (c.c.) \rightarrow d_n \vec{\mathcal{E}} \cdot \vec{\Sigma}$

CP-even quantity \rightarrow Non-zero VEV (Same as mixing angle α)

EDM : interplay of both electric field (P-odd state mixing) and CP-odd matrix element (energy splitting) in 1-st order perturbation