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•  Introduction : Current status of Lattice EDM calculations
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Recent nEDM limits: Snowmass 2021, 2203.08103

C. A. Baker, Phys. Rev. Lett. 97(2006)

dn < 2.9 × 10−26e . cm

B. Graner, Phys. Rev. Lett. 116(2016)

dn < 1.6 × 10−26e . cm

C. Abel et al, Phys. Rev. Lett. 124(2020)

dn = (0.0 ± 1.1stat ± 0.2sys) × 10−26e . cm

SM prediction

Nucleon EDM Experiments
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Fig. 1. Flow diagram of the dependence of the elementary level P,CP-odd processes on the EDMs of composite systems, whose
EDMs can be measurable. “RGE” means renormalization group evolution and “PQM” means Peccei-Quinn mechanism.

negligible due to the small neutrino mass. If the neutrinos are
Majorana fermions the effect of additional CP phases can gen-
erate the electron EDM from the two-loop level, and a larger
value will be allowed for de [62,63,64,65].

Purely gluonic CP-odd processes such as the θ-term or the
Weinberg operator are also known to be very small. The θ-term
generated by the CKM phase is θ̄ ∼ 10−17 [66,67], which yields
a nucleon EDM of |dN | ∼ 10−33e cm. The Weinberg operator
gives an even smaller nucleon EDM, of order 10−40e cm [68].

In the strongly interacting sector, the most widely accepted
leading hadronic CP violation due to the CP phase of the CKM
matrix is generated by the long distance effect. The long dis-
tance contribution of the CKM phase arises from the interfer-
ence between the tree level strangeness violating |∆S| = 1 W
boson exchange process and the penguin diagram (see Fig. 2),
which forms the Jarlskog invariant (7). From a naive dimen-
sional analysis, the nucleon and nuclear EDMs are estimated
as d ∼ O(αs

4πG
2
FJΛ

3
QCD) ∼ 10−32e cm, which is larger than the

contribution from the short distance processes (quark EDM,
chromo-EDM, Weinberg operator, etc). Previous calculations
of the nucleon EDM are in good agreement with this estima-
tions [69,70,71,72,73,74,75,76,77,78].

The CP violating effects in the SM exhibit an EDM well
smaller than the experimental detectability, and a large room
is left for the discovery of new source of CP violation BSM.
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Fig. 2. Tree level |∆S| = 1 W boson exchange diagram (left)
and the penguin diagram (right).

2.3 Sources of CP violation from BSM physics

In many scenarios of BSM, large EDMs are predicted, because
of higher order contributions that can arise at the one- or
two-loop levels. These contributions are overwhelmingly ex-
ceed over the loop suppressed SM contribution. In Fig. 4, we
present the typical lowest order CP violating processes of BSM
contributing to the EDMs at the elementary level. In this sub-
section, we would like to elaborate several such well motivated
candidates of BSM which can generate EDMs.

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]

Nucleon EDM
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generated by the CKM phase is θ̄ ∼ 10−17 [66,67], which yields
a nucleon EDM of |dN | ∼ 10−33e cm. The Weinberg operator
gives an even smaller nucleon EDM, of order 10−40e cm [68].

In the strongly interacting sector, the most widely accepted
leading hadronic CP violation due to the CP phase of the CKM
matrix is generated by the long distance effect. The long dis-
tance contribution of the CKM phase arises from the interfer-
ence between the tree level strangeness violating |∆S| = 1 W
boson exchange process and the penguin diagram (see Fig. 2),
which forms the Jarlskog invariant (7). From a naive dimen-
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QCD) ∼ 10−32e cm, which is larger than the

contribution from the short distance processes (quark EDM,
chromo-EDM, Weinberg operator, etc). Previous calculations
of the nucleon EDM are in good agreement with this estima-
tions [69,70,71,72,73,74,75,76,77,78].

The CP violating effects in the SM exhibit an EDM well
smaller than the experimental detectability, and a large room
is left for the discovery of new source of CP violation BSM.
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Fig. 2. Tree level |∆S| = 1 W boson exchange diagram (left)
and the penguin diagram (right).

2.3 Sources of CP violation from BSM physics

In many scenarios of BSM, large EDMs are predicted, because
of higher order contributions that can arise at the one- or
two-loop levels. These contributions are overwhelmingly ex-
ceed over the loop suppressed SM contribution. In Fig. 4, we
present the typical lowest order CP violating processes of BSM
contributing to the EDMs at the elementary level. In this sub-
section, we would like to elaborate several such well motivated
candidates of BSM which can generate EDMs.

Role of (lattice) QCD : connect quark/gluon-level (effective) operators to 
hadron/nuclei matrix elements and interactions (Form factor, dn) 
Non-perturbative determination is important → Lattice QCD calculation

Important bottleneck 
of the EDM calculation!

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]

Nucleon EDM
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dim=4, ✓QCD

dim=6, Weinberg three gluon

dim=5, e, quark EDM

dim=5, chromo EDM

+
X

C(4q)
i O

(4q)
i dim=6, Four-quark operators

Effective CPV operators
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dim=4, ✓QCD

dim=6, Weinberg three gluon

dim=5, e, quark EDM

dim=5, chromo EDM

+
X

C(4q)
i O

(4q)
i dim=6, Four-quark operators

Effective CPV operators

•  Why  ? → Strong CP problem


• A dynamical solution : PQ symmetry (θ → 0 and Axion)  


• Other dynamical solutions? 


c.f. Conceptional discussions of “un-observability” of topological charges. 


e.g., Topological charge decouples to hadron correlation functions in infinite 

volume limit？ [G. Schierholz, 2024].


→ Lattice QCD are important to confirm the problem and to constrain θ.

θ̄ ≤ $(10−10)
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Lattice regularization 
q

q
q

Path integral of field theory

1.Generate samples of vacuum, typically O(10)—O(1,000) samples of gauge configurations Uμ(n). 


2. Then measure physical observables on the vacuum ensemble (important sampling)

Lattice QCD : First principle calculation of QCD [Wilson, ’74]

Thermalized configurations
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Re-weighting method 

e�SQCD�i✓Q = e�SQCD
⇥
1� i✓Q+O(✓2)

⇤

hOi��CP = hOiCP�even � i✓hQ · OiCP�even +O(✓2)

(CP-even) (CP-odd)

CPV operator : Q, cEDM, etc…,   |θ| << 1 

c.f. Dynamical simulation including CP-odd interactions

Need additional simulation for ensemble generations to get non-zero topological sector.

Better sampling of non-zero Q sector.

Check linearity of θ  (ensemble generation for various imaginary θ)

hOi✓ ⇠

Z
DU(O)e�SQCD�✓imagQ

[R. Horsley et al.  (2008); H. K. Guo, et al., 2015)]

Original (CP-even) gauge configurations can be used. 

No sign problem.

Progress on the Nucleon EDMs on a Lattice Confinement XIII, Maynooth, July 31-Aug 6, 2018

    

Sergey N. Syritsyn

CP-odd Nucleon Structure on a Lattice (I)

Nucleon spectrum in the bg. electric field  
[S.Aoki et al '89 ; E.Shintani et al '06;  
 E.Shintani et al, PRD75, 034507(2007)]

hN(t)N̄(0)i✓,~E ⇠ e�(E±~dN ·~E)t
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FIG. 5: The time behavior of R(w/oθ=0)
3 (E, t; θ) in E = ±0.004, θ = 0.1 with domain-wall fermion.

(Top) neutron case, (bottom) proton case.
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P,T-odd Form Factor dN=F3(0)/2mN  
[E.Shintani et al '05, '15 ; F.Berruto et al '05 ;  
A.Shindler et al '15 ; C.Alexandrou et al'15] 
Require extrapolation F3(Q2→0)

Extraction of dN

Linear response to CP-odd interaction (e.g., QCD θ-term)
hO . . .i��CP = hO . . .iCP�even � i✓hQ · O . . .iCP�even +O(✓2)

[ S. Aoki et al (2005); F. Berruto et al (2005); A.Shindler et al (2015) ;  
C. Alexandrou et al (2015) ; E. Shintani et al (2016)]

CP-broken vacuum on a lattice:

2. Strategy and method in lattice QCD 

Imaginary q
` Analytical continuation to pure imaginary q

Izubuchi(2007), Horsley et al. (2008), Guo et al., (2015)

13

• There is no sign problem, then 
expect better signal.

• Need to generate the new QCD 
ensemble with qI

• Distribution of Q is shifted by qI

• EDM can be measured by 
spectrum or form factor in qI

vacuum.
• Challenging work if going to 

realistic lattice.

using q →qI then p is normal distribution function.

Simulation with dynamical (imaginary) θIQCD

new gauge ensembles ⇒ better sampling of Q≠0 sectors
[ R.Horsley et al (2008) ; F.K.Guo et al (2015) ]

hO . . .i✓ ⇠

Z
DU e�S�✓IQ (O . . .)

[R. Horsley, et al (2008)]

[S. Aoki et al. (2005); F. Berruto et al (2005), …]

Calculation of θ EDM on the lattice

9
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(Courtesy of Derek Leinweber, CSSM, University of Adelaide)

QCD non-trivial topological vacuum: source of CPV
Example of Monte Carlo simulation of QCD vacuum

Q (topological charge) in lattice Monte Carlo history (RBC /UKQCD collaboration)   

Nf=2+1 DWF,  mπ=290-420 MeV

Qtop on lattice (�=0)�

•  Qtop history in simulation Nf=2+1 DWF, [ RBC/UKQCD] 

•  1/a= 1.73, 2.28 GeV 

•  mps =290 – 420 MeV�

99

TABLE XXXVIII: Topological charge and susceptibility. The measurement frequency, “meas. freq.”, and

“block size” are given in units of Monte Carlo time.

ml meas. freq. block size 〈Q〉 〈Q2〉 ! (GeV4)

0.005 5 50 0.49 (25) 28.6 (1.4) 0.000290 (14)

0.01 5 50 -0.22 (37) 45.2 (2.5) 0.000458 (25)

0.004 4 200 0.59 (42) 11.4 (1.1) 0.000148 (14)

0.006 4 200 -0.07 (64) 24.8 (4.3) 0.000322 (55)

0.008 4 400 0.64 (100) 27.9 (5.6) 0.000363 (72)
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FIG. 52: Monte Carlo time histories of the topological charge. The light sea quark mass increases from top

to bottom, (0.005 and 0.01, 243 (top two panels), and 0.004-0.008, 323). Data for the 243 ensembles up to

trajectory 5000 were reported originally in [1] and the results from the new ensembles are plotted in black.

Most of the data was generated using the RHMC II algorithm (red and black lines). The RHMC 0 (green

line) and RHMC I (blue line) algorithms were used for trajectories up to 1455 for the ml = 0.01 ensemble.

The small gap in the top panel represents missing measurements which are irrelevant since observables are

always calculated starting from trajectory 1000.
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FIG. 53: Topological charge distributions. Top: 323, ml = 0.004− 0.008, left to right. Bottom: 243,

ml = 0.005 and 0.01.

tary pion masses in the range 290–420MeV (225–420MeV for the partially quenched pions). The

raw data obtained at each of the two values of ! was presented in Sections III and IV respectively

and the chiral behaviour of physical quantities on the 243 and 323 lattices separately was studied

in AppendixA. The main aim of this paper however, was to combine the data obtained at the

two values of the lattice spacing into global chiral–continuum fits in order to obtain results in the

continuum limit and at physical quark masses and we explain our procedure in SectionV. In that

section we define our scaling trajectory, explain how we match the parameters at the different

lattice spacings so that they correspond to the same physics and discuss how we perform the ex-

trapolations. We consider this discussion to be a significant component of this paper and believe

that this will prove to be a good approach in future efforts to obtain physical results from lattice

data. Although we apply the procedures to our data at two values of the lattice spacing, we stress

that the discussion is more general and can be used with data from simulations at an arbitrary

number of different values of ! . In the second half of SectionV we then perform the combined

continuum–chiral fits in order to obtain our physical results for the decay constants, physical bare

���
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Form factor method [Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); 
Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)]

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

� F3(Q
2)
�5�µ⌫q⌫
2mN

�
up,�

Dirac & Pauli Form Factor 
(P, T even)

Electric Dipole Form Factor (EDFF)

(q = p0 � p, Q2 = �q2)

Form factor is widely used to extract EDM, 

one need to calculate the “3pt correlation function” with topological charge.

N(t)N(0)

electric magnetic current


q p’

Extraction of nucleon EDM

Sθ = θ
32π2 ∫ d4xTr[Gμν(x)G̃μν(x)]

Electric dipole moment (Q2 →０ extrapolation)
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Form factor method [Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); 
Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)]

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

� F3(Q
2)
�5�µ⌫q⌫
2mN

�
up,�

Dirac & Pauli Form Factor 
(P, T even)

Electric Dipole Form Factor (EDFF)

Form factor is widely used to extract EDM, 

one need to calculate the “3pt correlation function” with topological charge.

Extraction of nucleon EDM

Sθ = θ
32π2 ∫ d4xTr[Gμν(x)G̃μν(x)]

Electric dipole moment (Q2 →０ extrapolation)
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Form factor method [Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); 
Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)]
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Dirac & Pauli Form Factor 
(P, T even)

Electric Dipole Form Factor (EDFF)

Form factor is widely used to extract EDM, 

one need to calculate the “3pt correlation function” with topological charge.

Extraction of nucleon EDM

Sθ = θ
32π2 ∫ d4xTr[Gμν(x)G̃μν(x)]

Electric dipole moment (Q2 →０ extrapolation)
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[S. Syritsyn et al. (2018)]

Problem: Prior to 2017, a spurious mixing between EDM and magnetic 
moments in all previous lattice computations of nucleon form factor. 13



CP violating interaction induces a chiral phase : 


 This mixing angle α has to be calculated, and rotated away to obtain “net” 
CP-violation effect.

Spurious mixing problem
[M. Abramczyk, et al. Phys.Rev.D 96 (2017)]
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[Previous “lattice” parametrization prior to 2017]

(F2 + iF3�5) = e2i↵�5(F̃2 + iF̃3�5), ,
(
F̃2 = cos (2↵)F2 + sin (2↵)F3

F̃3 = � sin (2↵)F2 + cos (2↵)F3

α is mixing angle ( CP-violating mass correction)

is a solution spinor of the free Dirac equation in : ũp (/p�mNe�2i↵�5)ũp = 0
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CP violating interaction induces a chiral phase : 


 This mixing angle α has to be calculated, and rotated away to obtain “net” 
CP-violation effect.

Spurious mixing problem
[M. Abramczyk, et al. Phys.Rev.D 96 (2017)]
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Table III: Corrections to the results reported in earlier calculations of ✓̄-induced nucleon EDM for the nucleon (n) and the
proton(p). Some of the used values are at non-zero momentum transfer Q2, or at non-zero value of ✓̄-angle. Both form factors
F2,3 are quoted as dimensionless (in “magneton” units e/(2mN )). The errors for F3 are taken equal to those of F̃3 except
Ref. [8], in which the error are extracted from our interpolation of the corrected F̄3(✓̄) values (see Fig. 16). In the first row, the
correction follows the original conventions [10] exactly. In the following rows, the parity-mixing angles ↵ have been transformed
to ↵ < 0 to and the EDMs were corrected with F3 = F̃3 + 2↵F2 using the assumption discussed in the text.

m⇡ [MeV] mN [GeV] F2 ↵ F̃3 F3

[10] n 373 1.216(4) �1.50(16)b �0.217(18) �0.555(74) 0.094(74)
[5] n 530 1.334(8) �0.560(40) �0.247(17)a �0.325(68) �0.048(68)

p 530 1.334(8) 0.399(37) �0.247(17)a 0.284(81) 0.087(81)
[6] n 690 1.575(9) �1.715(46) �0.070(20) �1.39(1.52) �1.15(1.52)

n 605 1.470(9) �1.698(68) �0.160(20) 0.60(2.98) 1.14(2.98)
[8] n 465 1.246(7) �1.491(22)c �0.079(27)d �0.375(48) �0.130(76)d

n 360 1.138(13) �1.473(37)c �0.092(14)d �0.248(29) 0.020(58)d

a
The value f1n was reported incorrectly in Ref. [5] with a factor of

1
2 [33].

b
Estimated as (� 1

2F
v
2 (0)) from Ref. [34] assuming F

s
2 ⇡ 00.

c
From Ref. [35] where F2 was computed with ✓̄ = 0.

d
Estimated from a linear+cubic fit to plotted ↵̄(✓̄) and F

✓
3 data [8].
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Figure 16: Corrected (filled symbols) and original (open symbols) values for the neutron form factor F3 at nonzero imaginary
✓-angle from Ref. [8]. The linear parts in the limit ✓ ! 0 are shown in Tab. III.

clear if the sign of the CP -odd interaction ⇠ G̃G is consistent in all of the Refs. [5–11]. On the other hand, all the
reported non-zero results for the proton and neutron EDM agree in sign with F3n(0) < 0 and F3p(0) > 0, and it
is reasonable to assume that any di↵erences in the conventions are compensated in each final reported EDM value.
Furthermore, because the ✓-angle is equivalent to a chiral rotation of quark fields, it is then reasonable to assume that
upon conversion to some common set of conventions, e.g., those of Ref. [10], the sign of the chiral rotation angle ↵
agrees between di↵erent calculations. Based on these plausible assumptions, we deduce that the results in [7, 8] must
be corrected as F ✓

3 = F̃ ✓
3 + 2↵(✓)F2

6, where ↵ < 0, in analogy with Ref. [10]. The data for ↵̄✓ and F̃ ✓
3 (0) at finite ✓̄

values are extracted from figures in Ref. [8]. The original F̃ ✓
3 (0) and the corrected F ✓

3 (0) values are shown in Fig. 16.
Following Ref. [8], the corrected F ✓

3 (0) values are interpolated to ✓̄ ! 0 using a linear+cubic fit F3(0)✓̄ + C ✓̄3 and the
resulting normalized values F3(0) = dF ✓

3 /d✓̄
��
✓̄=0

are given in Tab. III. We observe that the corrected values at both

the finite and zero ✓̄ values agree with zero at . 2� level.
Corrections to other results [5, 6], may be done on the similar basis7. The resulting values are also collected in

Tab. III, and in most cases they are compatible with zero, deviating at most 2�. We emphasize that, apart from
Ref. [10], these corrections are made using the sign assumptions discussed above. If our assumptions are wrong, the
corrected central values will be approximately twice as large compared to the originally reported values. Although we

6
Strictly speaking, for finite values of ✓̄ and ↵̄(✓̄), one has to use the hyperbolic “rotation” formula cosh(2↵)F3 = F̃3 + sinh(2↵)F2, in

which we neglect O(↵
2
) terms because |↵| . 0.15, while the precision is only ⇡ 10%.

7
Correction to results in Ref. [7] require the corresponding values for F2, which we could not locate in published works.

Correct EDFF

“Old definition” of EDFF

Form factor method with imaginary θ simulation [F. Guo et al., PRL 115, no.6, 062001 (2015)]

h0|N |p,�i��CP = ei↵�5up,� = ũp,�

¯̃up0,�0


F̃1�

µ + (F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
ũp,� = ūp0,�0


F̃1�

µ + e2i↵�5(F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
up,�

⌘ ūp0,�0


F1�

µ + (F2 + iF3�5)
i�µ⌫q⌫
2mN

�
up,�

¯̃up0,�0


F̃1�

µ + (F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
ũp,� = ūp0,�0


F̃1�

µ + e2i↵�5(F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
up,�

⌘ ūp0,�0


F1�

µ + (F2 + iF3�5)
i�µ⌫q⌫
2mN

�
up,�

[Previous “lattice” parametrization prior to 2017]

(F2 + iF3�5) = e2i↵�5(F̃2 + iF̃3�5), ,
(
F̃2 = cos (2↵)F2 + sin (2↵)F3

F̃3 = � sin (2↵)F2 + cos (2↵)F3

α is mixing angle ( CP-violating mass correction)

is a solution spinor of the free Dirac equation in : ũp (/p�mNe�2i↵�5)ũp = 0

/1615
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Recent lattice results for θ-induced nEDM (after 2017)

<latexit sha1_base64="tFRBJJ5lJTUqvLlN2owdUBzJEz8="></latexit>

Phenomenology method Neutron EDM [e fm]

Pospelov et al [2000] ChPT/NDA ⇠ 0.002
Pospelov et al [1999] QCD sum rules 0.0025(13)
Hisano et al [2012] QCD sum rules 0.0004+3

�2

Ema et al [2024] QCD sum rules 0.0005 ⇠ 0.0015

Using the correct definition of , the lattice results are more comparable 
with the phenomenological results but with huge errors.

→ Need to improve the signals.

F3

<latexit sha1_base64="YPmJKALaqGEhGnRVq+BMrsM1px4="></latexit>

Lattice Neutron EDM [e fm] Proton EDM [e fm]
Dragos et al [2019] dn/✓ = �0.00152(71) dp/✓ = 0.0011(10)
Alexandrou et al [2020] |dn/✓| = 0.0009(24) –
Bhattacharya et al [2021] dn/✓ = �0.003(7)(20) dp/✓ = 0.024(10)(30)
Liang et al [2023] dn/✓ = �0.00148(14)(31) dp/✓ = 0.0038(11)(8)

Re-analysis using “correct” nucleon operators from which unphysical chiral phase decouples.
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Nf=2+1 (Mobius) Domain wall fermion (chiral symmetry on the 

lattice)


Iwasaki gauge action 


All-mode and low-mode averaging techniques for measurements

Ensemble Lattice size Lattice spacing Statistics Pion mass
24I_005 243 x 64 0.1105fm 100cfgs 340MeV
24I_010 243 x 64 0.1105fm 1100cfgs 420MeV

Our results

2pt with exact solver 1
2pt with sloppy solver 64
low mode all to all 2pt Volume

17
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•Uniform electric field preserving translational invariance and periodic boundary 

conditions on a lattice (Euclidean imaginary electric field)

•No sign problem: analytic continuation of CP-odd interaction

•Neutron energy shift in background electric field

Background electric field method

z

t

Uμ → eiqAμUμ

Az(z, t) = − ϵzt

At(z, Lt − 1) = ϵzz × Lt

ϵz = 6π
LtLx

n

The setup of U(1) gauge link

W. Detmold, B. Tiburzi and A. Walker-Loud, Phys.Rev.D81(2010)

n = ± 1, ± 2,...

ΔE = dn ⃗S ⋅ ⃗ϵ

Quantization condition

 : Strength of 
background field
ϵz

18



Lattice EDM with b.g. electric field

• The EDM can be extracted from the energy shift of 2pt in the 
background electric field

δE = dnϵz
ΣZ : − iγxγy

 : Chiral rotation angleα
 : anomalous magnetic momentκ

• The extraction of EDM

• 2pt nucleon correlation functions with topological charge

19



• The matrix elements can be related to the energy shift through FH theorem

dθ
nϵz = ⟨N ↑ |∑⃗

x
q( ⃗x) |N ↑ ⟩E

C. Bouchard, et al., PRD96(2017)

2pt correlation function

FH theorem

Nucleon Energy shift

EDM can be obtained from the matrix element

  from global topological chargedn   from local topological charge density operatordn
FH theorem

Signal can be improved.

Feynman-Hellman (FH) theorem

• EDM using FH theorem

<latexit sha1_base64="lhCqFARGtNquScyjr/ZUHK9Licw="></latexit>

dE(�)

d�

����
�=0

=

*
N

�����
dĤ(�)

d�

�����N
+

Q ∼
∫

V4

GG̃, 〈Q2〉 ∼ V4 →  (Statistical error)2   V4 ∝
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• Comparison of results obtained using local and global topological 
charge 

EDM using Global top. charge

The results obtained using the local operator have much better signal

dn(tf )ϵztf ∼ ⟨N(tf )
T

∑
τ=0

∑⃗
x

q( ⃗x, τ)N(0)⟩E dn(tf , τ)ϵz ∼ ⟨N(tf )∑⃗
x

q( ⃗x, τ)N(0)⟩E

EDM using local top. charge

−dn

θ
= 0.0009(10)[e . fm]

Results of nEDM
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Topological charge from quark loop

Gluonic definition: 

The dependence of  on #(Dirac eigenvectors)QF Comparison of Q 

Fermionic definition: 

The top charge  with different   is consistent. QF mf

<latexit sha1_base64="upFmJxhxRFIgbFg7ggkmBoYcKuI="></latexit>

⇢F (x) = �mqJA(x) = �mqTr
⇥
�5D

�1(x, x)
⇤

<latexit sha1_base64="PXcwOZYaAw3WrQPwSCshw1VsGUo="></latexit>

⇢G(x) =
1

16⇡2
Tr

h
Gµ⌫G̃

µ⌫
i

x

<latexit sha1_base64="9USn6n9IW1ydidgNIQhtOfkyoC8="></latexit>

QG =
X

x

⇢Q(x), QF =
X

x

⇢F (x)

Index Theorem for Dirac operator: 
<latexit sha1_base64="wck35YdsX782zgd7bLlybC2g1iI="></latexit>

Qtop ⌘ QG = QF

ql(0.001)

ql(0.002)

ql(0.005)

Gluon

7600 7800 8000 8200 8400

-20

-10

0

10

20

Q

FIG. 2. The comprison of topological charges obtained using gluon field and quark loop(ql) with

di↵erent quark mass mf , which is labeled by the numbers in the bracket. We have applied the

gradient flow on the gluon field with tgf = 8a2.

by quark loop(ql) and gluon field on 90 configurations in Fig. (2). The topological charge

with di↵erent quark mass are consistent with each other. We apply the gradient flow to the

gluon operator and topological charger in this case is strongly correlated with results from

quark loop.

By using SS: TODO fix as above?

h⇢Q(x)Oi = �i@µhAµ(x)Oi+ 2mqhJ5(x)Oi (21)
X

~x

h⇢Q(x)Oi = @⌧

X

~x

hA0(x)Oi+ 2mq

X

~x

hJ5(x)Oi (22)

(23)

where ⌧ = it is Euclidean time

the target correlation function is

P
~xh⇢Q(⌧, ~x)Oi = @⌧ hQA(⌧)Oi+ 2mq

P
~xhJ5(⌧, ~x)Oi, (24)

QA(⌧) =
P

~xA0(x) (25)

(26)

8

Thanks to lattice chiral symmetry
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Results of nEDM 

•The comparison of EDMs obtained using topological charge defined 
by gluon field and quark loop

Gluonic definition

The results using the topological charge defined by quark loop have 
better signals.

Fermionic definition

− dn

θ
= 0.0018(4)
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Comparison of different groups’ results 

4

Figure 3. The Q2 dependence of F3,n with m⇡,v ⇠ m⇡,s =
339 MeV. The green band shows a linear fit in Q2 while the
red band shows the fit with an additional Q4 term.

uncertainty of this cutoff will be estimated by two inde-
pendent ways: 1) taking the difference between the value
at the cutoff Rc and the constant fit result with R � Rc;
2) fitting the correlation between the topological charge
density and the current operator in the nucleon state to
an exponential form first, and then taking the summa-
tion of the correlation in the tail R � Rc. Either way
suggests a ⇠12% systematic uncertainty.

Benefited from CDER, the data points of F3,n(Q2)
show a non-vanishing Q2 dependence as shown in Fig 3
for the case of m⇡,v ⇠ m⇡,s = 340 MeV, while there is
no significant deviation from a linear shape. Thus we
use a linear fit for the extrapolation to Q2 = 0, and esti-
mate the corresponding systematic uncertainty to be the
difference between the extrapolated value and the data
value with the smallest Q2.

After the Q2
! 0 extrapolation, the final chiral ex-

trapolation of the neutron EDM is shown in the upper
panel of Fig. 4 with both valence and sea pion mass de-
pendencies. We observe that the partially quenched data
behave differently from those with unitary points in the
lower panel. The former tend to move away from zero
as the valence quark mass decreases. Using the over-
lap fermion allows us to fit our data with the partially
quenched chiral perturbation form [29] at finite lattice
spacing,

dn,p = c1,n/pm
2
⇡,s log

 
m2

⇡,v

m2
N

!
+ c2,n/pm

2
⇡,s

+ c3,n/p
�
m2

⇡,v �m2
⇡,s

�
, (8)

where c1,2,3,n/p are free parameters. Our lattice data
are well fitted with �2/d.o.f. = 1.2, and our numerical
results suggest that the different valence and sea quark
mass dependence is consistent with the chiral perturba-
tion expression. It is also interesting to point out that
the chiral log term is crucial to ensure that the NEDM
approaches zero in the chiral limit of both the valence
and sea quark masses. With the zero NEDM constraint

Figure 4. The chiral extrapolation of dn/✓ on both the
sea and valence quark masses (upper panel) and on only the
unitary points (lower panel).

at the chiral limit, our interpolated result for neutron is
dn = �0.00148(14), where the statistical uncertainty is
less than 10%. This is quite an improvement from the 2
� statistical error in Ref. [16].

We also carry out another chiral extrapolation using
only the unitary pion mass points, as shown in the lower
panel of Fig. 4. It gives dn = �0.00142(20)✓̄, which is
consistent with the prediction using partially quenched
data points but with larger statistical uncertainty. We
take the difference between the extrapolated results with
and without partially quenched data points as an estima-
tion of the systematic uncertainty in the chiral extrapo-
lation.

The proton EDM and its systematic uncertainties can
be obtained with a similar procedure. More detailed dis-
cussion on the fits, systematic uncertainty estimation,
and proton EDM can be found in the Supplemental Ma-
terials [19].

Summary: We calculate the nucleon electric dipole mo-
ment with overlap fermions on 3 domain wall lattices at
lattice spacing 0.11 fm. Since the overlap fermion pre-
serves chiral symmetry, we have well-defined topological
charge and the chiral extrapolation is carried out reli-
ably without the need of doing continuum extrapolations
first. We have in total 3 sea pion masses and 10 partially
quenched valence pion masses in the chiral fitting and
find that the EDM dependence on the sea and valence

Liang et al. (2023)

Chiral extrapolation

• The chiral extrapolation of EDM to the physical point

14

Linear extrapolation:  dn = c0m2
π

ChPT extrapolation:  dn = c1m2
π + c2m2

π log(m2
π)

dn/θ = 0.0084(18)

dn/θ = 0.0036(21)
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Figure 3. The Q2 dependence of F3,n with m⇡,v ⇠ m⇡,s =
339 MeV. The green band shows a linear fit in Q2 while the
red band shows the fit with an additional Q4 term.

uncertainty of this cutoff will be estimated by two inde-
pendent ways: 1) taking the difference between the value
at the cutoff Rc and the constant fit result with R � Rc;
2) fitting the correlation between the topological charge
density and the current operator in the nucleon state to
an exponential form first, and then taking the summa-
tion of the correlation in the tail R � Rc. Either way
suggests a ⇠12% systematic uncertainty.

Benefited from CDER, the data points of F3,n(Q2)
show a non-vanishing Q2 dependence as shown in Fig 3
for the case of m⇡,v ⇠ m⇡,s = 340 MeV, while there is
no significant deviation from a linear shape. Thus we
use a linear fit for the extrapolation to Q2 = 0, and esti-
mate the corresponding systematic uncertainty to be the
difference between the extrapolated value and the data
value with the smallest Q2.

After the Q2
! 0 extrapolation, the final chiral ex-

trapolation of the neutron EDM is shown in the upper
panel of Fig. 4 with both valence and sea pion mass de-
pendencies. We observe that the partially quenched data
behave differently from those with unitary points in the
lower panel. The former tend to move away from zero
as the valence quark mass decreases. Using the over-
lap fermion allows us to fit our data with the partially
quenched chiral perturbation form [29] at finite lattice
spacing,
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where c1,2,3,n/p are free parameters. Our lattice data
are well fitted with �2/d.o.f. = 1.2, and our numerical
results suggest that the different valence and sea quark
mass dependence is consistent with the chiral perturba-
tion expression. It is also interesting to point out that
the chiral log term is crucial to ensure that the NEDM
approaches zero in the chiral limit of both the valence
and sea quark masses. With the zero NEDM constraint

Figure 4. The chiral extrapolation of dn/✓ on both the
sea and valence quark masses (upper panel) and on only the
unitary points (lower panel).

at the chiral limit, our interpolated result for neutron is
dn = �0.00148(14), where the statistical uncertainty is
less than 10%. This is quite an improvement from the 2
� statistical error in Ref. [16].

We also carry out another chiral extrapolation using
only the unitary pion mass points, as shown in the lower
panel of Fig. 4. It gives dn = �0.00142(20)✓̄, which is
consistent with the prediction using partially quenched
data points but with larger statistical uncertainty. We
take the difference between the extrapolated results with
and without partially quenched data points as an estima-
tion of the systematic uncertainty in the chiral extrapo-
lation.

The proton EDM and its systematic uncertainties can
be obtained with a similar procedure. More detailed dis-
cussion on the fits, systematic uncertainty estimation,
and proton EDM can be found in the Supplemental Ma-
terials [19].

Summary: We calculate the nucleon electric dipole mo-
ment with overlap fermions on 3 domain wall lattices at
lattice spacing 0.11 fm. Since the overlap fermion pre-
serves chiral symmetry, we have well-defined topological
charge and the chiral extrapolation is carried out reli-
ably without the need of doing continuum extrapolations
first. We have in total 3 sea pion masses and 10 partially
quenched valence pion masses in the chiral fitting and
find that the EDM dependence on the sea and valence

Liang et al. (2023)
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Chiral extrapolation

• The chiral extrapolation of EDM to the physical point
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#

#

~ 100 % error near physical point 

<latexit sha1_base64="2k5t1YkzI/dskUP//E4wVwloEOQ="></latexit>

m⇡ � 339 [MeV]

<latexit sha1_base64="YP0fsAUNjBfg4fPRxxzj3tUY5Gw="></latexit>

m⇡ � 410 [MeV]
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We test a new method: matrix elements with b.g. electric field, and fermionic 

definition of  topological charge, has better signals and more stable plateau.


So far the lattice results for neutron θ EDMs are consistent with model analyses.


Constrain θ-nEDM at physical point is challenging, which will require order of 

magnitude accumulation of statistics (huge computational effort), and/or alternative 

noise reduction techniques (chiral basis dependent effect? c.f. [Ema et al. (2024)])


  → Constraint relaxation on θ parameter or No strong CP problem?

Summary
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FIG. 11. EDM summary plot for the neutron (top) and proton (bottom) for 2 and 3 flavor QCD.

Triangles denote results of the current study and include statistical and systematic errors, as

described in the text. Results for other methods are also shown: external electric field (�E) [46],

and imaginary ✓ (F3(i✓))[44, 45]. Previous results show statistical errors only. Right-triangle is

result in Nf = 2+ 1+ 1 TM fermion [42] which is including systematic error. The cross symbol in

top panel denotes a range of values from model calculations of neutron EDM based on the baryon

chiral perturbation theory [7, 17, 20].
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method value
ChPT/NDA ⇠ 0.002 e fm
QCD sum rules [1,2] 0.0025± 0.0013 e fm
QCD sum rules [3] 0.0004+0.0003

�0.0002 e fm

Phenomenological estimates Lattice calculations

[E. Shintani, T. Blum, T. Izubuchi, A. Soni, PRD93, 094503(2015)]

Phenomenology: |dn| ~ θQCD 10-3 e fm -> |θQCD| < 10-10 
Lattice : |dn| ~  θQCD 10-2 e fm -> severer constraint on |θQCD| 

[1] M. Pospelov, A. Ritz, Nuclear Phys. B 573 (2000) 177,  
[2] M. Pospelov, A. Ritz, Phys. Rev. Lett. 83 (1999) 2526,  
[3] J. Hisano, J.Y. Lee, N. Nagata, Y. Shimizu, Phys. Rev. D 85 
(2012) 114044.



All mode average (AMA) and low mode average (LMA)

Gauge ensembles 24I_010
2pt with exact solver 1
2pt with sloppy solver 64
low mode all to all 2pt Volume

The signal can be significantly enhanced after using AMA and LMA.

[T. Blum, T. Izubuchi and E. Shintani, Phys.Rev.D 88 (2013)]

In our calculation O is the nucleon two point function under the electric field,

hN(tf )⇢Q(⌧, ~x)N̄(0)i = @⌧ hN(tf )QA(⌧)N̄(0)i+ 2mq

X

~x

hN(tf )J5(⌧, ~x)N(0)i (27)

the correlation function in the first term of the rhs in a large separation limit of two nucleon

operators :

lim
⌧!1

X

i,j

h0|N(tf )|EiihEi|QA(⌧)|EjihEj|N̄(0)|0ie�Ei(tf�⌧)�Ej⌧ (28)

= h0|N(tf )|E0ihE0|QA(⌧)|E0ihE0|N̄(0)|0ie�E0tf (29)

when the ground state is a parity mixing state, thus, the correlation function is independent

of ⌧ , and the first term vanishes.

C. Low Mode Averaging

[Defs of eoprec eigenvectors, AMA vectors]

[Nucleon 2pt from AMA vectors]

Measurements of the correlation functions are done in an all-mode-average (AMA) [9,

10] framework with a full-volume low-mode average (LMA) [11–14]. These techniques are

employed to enhance statistics with lower computational cost, but the latter is also crucial

in the case of the ✓-term induced nEDM because of the close relationship of zero-modes of

the Dirac operator and the topological charge (density) [15].

The AMA and LMA techniques are combined to yield an improved estimator for a generic

observable O (here, O is the nucleon correlation function),

hOAMAi =
1

Nex
hOexi �

1

Nex
hOsli+

1

Nsl
hOsli (30)

where “ex” refers to an exact calculation (to numerical precision), and “sl” refers to a

cheaper approximate (sloppy) one. The first and second terms on the RHS remove the bias

of the approximate estimate of O, and the last term is used to reduce the statistical noise

(Nsl � Nex). The key idea is that the approximate and exact values have (mostly) the same

fluctuations so that the bias correction contributes very little to the total statistical error [9].

In practice the exact and approximate observables are constructed using conjugate gradient

solves for the quark propagators that make up the nucleon correlation function. The sloppy
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Reanalysis of “lattice” θ induced EDM

Correction is simple: 
Correction made   
by ourselves

Ref[1] : C. Alexandrou et al., Phys. Rev. D93, 074503 (2016),    
Ref[2] : E. Shintani et al., Phys.Rev. D72, 014504 (2005). 
Ref[3] : F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys.Rev. D73, 054509 (2006) 
Ref[4] : F. K. Guo et al., Phys. Rev. Lett. 115, 062001 (2015). 

The lattice results are consistent with phenomenological estimates.  
After removing spurious contributions, no signal of EDM. 
How to improve the signal?



The extraction of gradient flow diffusion effect

•  The diffusion effect in the gradient flow 

31

q̃(tgf
2 ; τ) = ∫ dt′ K(tgf

2 − tgf
1 ; |τ − τ′ | )q̃(tgf

1 ; τ′ )
Fourier  

transformation
q̃(tgf

2 ; ω) = K(tgf
2 − tgf

1 ; ω)q̃(tgf
1 ; ω)

The diffusion kernel can be extracted through

Normalization ∑
τ

K(tgf; τ) = 1

The correlation length become larger 
with increasing tgf

The correlation will be zero when τ > 6

Diffusion kernel under 
gradient flow



Gradient flow dependence

• The noise is 
suppressed at 
larger gradient 
flow time. 

• The plateau 
will be shifted 
due to the 
diffusion.

C3(tgf
2 ; τ, tsep) = K(tgf

2 − tgf
1 ; |τ − τ′ | )

τ′ 

⊗ C3(tgf
1 ; τ′ , tsep)

Diffusion kernel

 Gradient flow diffusion

⟨q̃(τ, tgf )q̃(0,tgf )⟩ ∝ e−C τ2
tgf

⟨NN̄ |FF̃⟩

⟨N(FF̃) |N⟩
Contact term



 Consider 3-pt functions of topological charge density  

Performing the spectral decomposition  

3pt function with topological charge density in the presence of background electric field

This matrix element can be non-zero due to non-zero electric field, which 
corresponds to the energy shift (δE)   

Ĥ = Ĥ0 + �Ĥ, �En = hn|(�Ĥ)|ni
c.f. 1st order energy correction in the perturbation theory of quantum mechanics

�C3pt(⌧, ~E) =hN̂(T )Q̄(⌧) ¯̂N(0)i~E , (0 < ⌧ < T )

|N+, Ei

�C3pt(⌧, ~E) =hN̂(T )Q̄(⌧) ¯̂N(0)i~E ⇠
X

n,m

e�En(T�⌧)�Em⌧ h0|N̂ |n, Eihn, E|Q̄|m, Eihm, E| ¯̂N |0i

=|ZN |2e�mNT hN+, E|Q̄|N+, Ei+ (excited states)

:  ground state nucleon in the presence of b.g. electric field

hN+, E|Q̄|N+, Ei = �E = dn ⇥ ~⌃ · ~E



 State mixing due to electric field (without CP-odd operator)

 More details on Perturbative analysis with background electric field

Ground state nucleon (originally P-even) can mix with the negative parity nucleon (N-)

(c.f. 1st order state mixing in quantum mechanics)

[G. Baym, and H. Beck, PNAS 7438, 113, 27, 2016]

|N+, Ei = |N+, 0i+ ~E · ~D|N�, 0i+ · · ·
~D =

e

2mN�(mN� �mN+)

Z
dx3~xhN�, 0|⇢EM (x)|N+, 0i

⇢EM =
2

3
ū�0u(x)�

1

3
d̄�0d(x)

CP-even quantity → Non-zero VEV 
(Same as mixing angle α) 

EDM : interplay of both electric field (P-odd state mixing) and CP-odd matrix 
element (energy splitting) in 1-st order perturbation

(expectation  value of the dipole operator)

hN+, E|Q̄|N+, Ei =hN+, 0|Q̄|N+, 0i

+ ~E · ~DhN+, 0|Q̄|N�, 0i+ (c.c.) ! dn~E · ~⌃

← zero due to P Sym. 


