

High-Temperature Superconducting Cavities

for Dark Matter Axion Search at CAPP

Danho Ahn (IBS-CAPP)

Center for Axion and Precision Physics Research, Institute of Basic Science, Daejeon 34051, Republic of Korea

Introduction:

Cavity Haloscope Experiment for Dark Matter Axion Search

Introduction:

High Quality Factor Cavity is Needed for Faster Axion Search

Introduction:

High Quality Factor Should be Maintained in a High Magnetic Field

Material Evaluation Criteria

Two Preferred Conditions for Cavity Haloscopes

High-Temperature Superconductor

 $\frac{R_s}{R_{Cu}} \ll 1$ in a magnetic field

Biaxially-Textured Film

Minimizing Surface Defect & Magnetic Field Degradation

Vortex Dynamics & Energy Dissipation Mechanism

> Type II superconductor forms vortices (quantized magnetic flux, $\overline{\Phi_0}$) in a magnetic field.

KAIST RENCONTRES ⑤ iCiSE ibS 기초과학연구원

Vortex Dynamics & Energy Dissipation Mechanism

- > Type II superconductor forms vortices (quantized magnetic flux, $\overline{\Phi_0}$) in a magnetic field.
- Vortices respond to the incident electromagnetic wave.

Vortex Dynamics & Energy Dissipation Mechanism

- Type II superconductor forms vortices (quantized magnetic flux, $\overline{\Phi_0}$) in a magnetic field.
- Vortices respond to the incident electromagnetic wave.
- Every vortex is trapped in each pinning potential well.

Vortex Dynamics & Energy Dissipation Mechanism

- Type II superconductor forms vortices (quantized magnetic flux, $\overline{\Phi_0}$) in a magnetic field. \triangleright
- Vortices respond to the incident electromagnetic wave.
- Every vortex is trapped in each pinning potential well.
- Above a depinning frequency, pinning force become negligible. \succ

High Depinning

Vortex Dynamics & Energy Dissipation Mechanism

- Type II superconductor forms vortices (quantized magnetic flux, $\overline{\Phi_0}$) in a magnetic field. \triangleright
- Vortices respond to the incident electromagnetic wave.
- Every vortex is trapped in each pinning potential well.
- Above a melting field, vortices are mixed each other. >

Vortex Dynamics & Energy Dissipation Mechanism

- > Type II superconductor forms vortices (quantized magnetic flux, $\overline{\Phi_0}$) in a magnetic field.
- Vortices respond to the incident electromagnetic wave.
- > Every vortex is trapped in each pinning potential well.
- > In the pinning regime, the surface resistance is much smaller than that of copper.

Considering Cavity Haloscope Experimental Condition

KAIST RENCONTRES

(の iCise jus 기초과학연구원

100 mK 8 GHz	R _s (B = 0 T) (Ohm)	R _s (B = 8 T, ॥c) (Ohm)	Critical Field (H _{c2})	Depinning Frequency
OFHC Cu (Metal) Low Temperature Superconduct	~ 7E-3 ors (LTS)	~ 7E-3	None	None
NbTi (LTS) Gatti <i>et al</i> . PRD(2019)	~ 1E-6	~ 4e-3	Small ~ 13 T	~ 45 GHz
Nb ₃ Sn (LTS) Alimenti <i>et al.</i> SUST(2020) High Temperature Superconduct	~ 1E-6	?	~ 25 T	small ~ 6 GHz
Bi-2212 (HTS) Bi-2223 (HTS)	~ 1E-5	?	> 100 T (IIab) Larbalestier <i>et al.</i> Nature(2001)	?
TI-1223 (HTS)	~ 1E-5	~ 1e-4 Calatroni <i>et al</i> . SUST(2017)	> 100 T (IIab) Larbalestier <i>et al.</i> Nature(2001)	12 — 480 MHz Calatroni <i>et al.</i> SUST(2017)
ReBCO (HTS) Re = Y, Gd, Eu,	~ 1E-5 Ormeno <i>et al.</i> PRB(2001)	~ 1e-4 Romanov <i>et al.</i> Scientific Reports(2020)	> 100 T (IIab) Larbalestier <i>et al.</i> Nature(2001)	Strong Pinning 10 — 100 GHz Romanov <i>et al.</i> Scientific Reports(2020)

Material Evaluation Criteria

Two Preferred Conditions for Cavity Haloscopes

High-Temperature Superconductor

$$\frac{R_s}{R_{Cu}} \ll 1$$
 in a magnetic field

Biaxially-Textured Film

Minimizing Surface Defect & Magnetic Field Degradation

Biaxially-Textured ReBCO Coated Conductor Architecture

> Larger energy dissipation is originated due to flowing current at high angle grain boundaries.

M. J. Lancaster, "Passive microwave device applications of HTS", Cambridge University Press (2006).

Biaxially-Textured ReBCO Coated Conductor Architecture

- > Larger energy dissipation is originated due to flowing current at high angle grain boundaries.
- Second generation ReBCO coated conductor technology realizes low angle grain boundaries which have misorientation angles less than 4 degree. (biaxially-textured)

Biaxially-Textured ReBCO Coated Conductor Architecture

- > Larger energy dissipation is originated due to flowing current at high angle grain boundaries.
- Second generation ReBCO coated conductor technology realizes low angle grain boundaries which have misorientation angles less than 4 degree. (biaxially-textured)
- > 2 dimensional high-quality ReBCO coated conductor is flexible to manipulate.

iCiS€ il-S기초과학연구원

KAIST

Biaxially-Textured ReBCO Coated Conductors Shows Low Surface Resistance

Cavity Haloscope:
$$\nu = O(1 \sim 10^2)$$
 GHz, $T_{phy} = O(10^2)$ mK, $B = O(10)$ T

 $R_{s}(\nu, T_{phy}, B) = R_{BCS}(\nu, T_{phy}, 0) + R_{defect}(\nu, T_{phy}, 0) + R_{vortex}(\nu, T_{phy}, B) + R_{magnetism}(\nu, T_{phy}, B)$

Biaxially-Textured ReBCO Coated Conductors Shows Low Surface Resistance

Cavity Haloscope:
$$v = O(1 \sim 10^2)$$
 GHz, $T_{phy} = O(10^2)$ mK, $B = O(10)$ T
 $R_s(v, T_{phy}, B) = R_{BCS}(v, T_{phy}, 0) + R_{defect}(v, T_{phy}, 0) + R_{vortex}(v, T_{phy}, B) + R_{magnetism}(v, T_{phy}, B)$

Biaxially-Textured ReBCO Coated Conductors Shows Low Surface Resistance

Cavity Haloscope:
$$v = O(1 \sim 10^2)$$
 GHz, $T_{phy} = O(10^2)$ mK, $B = O(10)$ T
 $R_s(v, T_{phy}, B) = R_{BCS}(v, T_{phy}, 0) + R_{defect}(v, T_{phy}, 0) + R_{vortex}(v, T_{phy}, B) + R_{magnetism}(v, T_{phy}, B)$

Biaxially-Textured ReBCO Coated Conductors Shows Low Surface Resistance

Cavity Haloscope:
$$v = O(1 \sim 10^2)$$
 GHz, $T_{phy} = O(10^2)$ mK, $B = O(10)$ T
 $R_s(v, T_{phy}, B) = R_{BCS}(v, T_{phy}, 0) + R_{defect}(v, T_{phy}, 0) + R_{vortex}(v, T_{phy}, B) + R_{magnetism}(v, T_{phy}, B)$
For Y & Eu atoms

Biaxially-Textured ReBCO Coated Conductors Shows Low Surface Resistance

Cavity Haloscope:
$$\mathbf{v} = \mathbf{O}(\mathbf{1} \sim \mathbf{10^2})$$
 GHz, $T_{phy} = O(\mathbf{10^2})$ mK, $\mathbf{B} = \mathbf{O}(\mathbf{10})$ T
 $R_s(v, T_{phy}, B) = R_{BCS}(v, T_{phy}, 0) + R_{defect}(v, T_{phy}, 0) + R_{vortex}(v, T_{phy}, B) + R_{magnetism}(v, T_{phy}, B)$
 $\sim \mathbf{v}^2$ For Y & Eu atoms

Thin Film Does Not Degrade External Tesla-Scale Magnetic Field

Thin Film Does Not Degrade External Tesla-Scale Magnetic Field

Thin Film Does Not Degrade External Tesla-Scale Magnetic Field

Thin Film Does Not Degrade External Tesla-Scale Magnetic Field

Thin Film Does Not Degrade External Tesla-Scale Magnetic Field

Development Methods

Strategy 1

Pros: Clean Surface Cons: Slow Fabrication, Electrically Disconnected

Strategy 2

Pros: Easy to Fabricate, Electrically Connected Cons: Surface Defect (~ 10%)

Strategy 1

- \succ Simulation study can estimate energy loss from gaps.
- \succ Misalignments and defects are considered based on fabrication error.
- \succ Only evanescent field enter into a gap.

Ahn et al. PRApplied(2022), 17, L061005

Strategy 1

History of Development

Date	Таре	f (GHz)	n _{gap}	Q (0 T)	Q (8 T)	\mathbf{Q}_{gap}	Experiment
1	YBCO	6.9	12	0.22 M	0.33 M		Prototype
2	GdBCO	2.3	32	0.60 M	0.50 M		Cavity Haloscope
3	EuBCO+APC	2.3	34	5.0 M	3.5 M	> 10 M	Axion Quark Nugget Search
4	EuBCO+APC	5.4	14	20 M	13 M		Cavity Haloscope
5	EuBCO+APC	1.2 ~ 1.5	?	?	?		Axion Haloscope (CAPP-MAX)

KAIST RENCONTRES S. ICISE INS MARKEN HAR SOME

Superconducting Cavity for CAPP-MAX

- > CAPP's flagship experiment to search for axion above 1GHz
- Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) sensitivity

B-field map

Ahn's talk on Mon 13:30

Ivanov's talk on Fri 13:55

Superconducting Cavity for CAPP-MAX

arXiv:2402.12892, Submitted to PRX, Accepted

 ν_a [GHz]

Superconducting Cavity for CAPP-MAX

arXiv:2402.12892, Submitted to PRX, Accepted

 ν_a [GHz]

Superconducting Cavity for CAPP-MAX

arXiv:2402.12892, Submitted to PRX, Accepted

Below DFSZ sensitivity or Axion as 20% of Dark Matter

Yannis K. Semertzidis's Opening Talk on Mon 10:00

 ν_a [GHz]

Superconducting Cavity for CAPP-MAX

arXiv:2402.12892, Submitted to PRX, Accepted

Strategy 2

KAIST RENCONTRES ⑤ iCise ib 加速的空间

- Sensitive to Contact Problem
- ➢ Gaps should be closed electrically to prevent a radiation

Development Methods

Strategy 1

Pros: Clean Surface Cons: Slow Fabrication, Electrically Disconnected

Strategy 2

Pros: Easy to Fabricate, Electrically Connected Cons: Surface Defect (~ 10%)

KAIST RENCONTRES S ICISE IN 712 200072

KAIST RENCONTRES S ICISE IN 7157997-91

Strategy 2

Strategy 2

Superconducting Cavity for CAPP-MAX

Superconducting Cavity for CAPP-MAX

Superconducting Cavity for High-frequency Axion Search

Superconducting Cavity for High-frequency Axion Search

KAIST RENCONTRES 5 iCige ibs 1200078

Superconducting Cavity for CAPP-MAX

Summary:

High-temperature Superconducting Cavities for Axion Search at CAPP

- Superconducting RF technology can enhance the scan rate of axion haloscope. >
- High-temperature superconductors (HTS) are one of the most promising superconductors \succ for realizing a high Q factor cavity in a high magnetic field.
- The Center for Axion and Precision Physics Research (CAPP) have successfully fabricated \succ 10 million Q factor cavity.
- Recently, CAPP developed large-scale HTS cavities for the CAPP-MAX experiment, aiming \succ to achieve sensitivity below DFSZ levels or even to detect 20% of axions as dark matter.
- Stay tuned! The physics run with the large-scale HTS cavity for CAPP-MAX will start soon.
- HTS cavities for high-mass axion search in R&D process. \succ

Strategy 1

Strategy 1

