

#### Spontaneously Broken (-1)-Form U(1) Symmetries

#### Motoo Suzuki





-1)-form symmetry and its relation to Strong CP problem" Created by ChatGPT

@The Axion Quest (2024)

# **My Challenge**

#### High energy theory (unified theory)

#### **Developments in various fields**

- physics including gravity
- QFT
- Cosmology
- mathematics

#### Low energy theory

# My strategy



# My strategy



### My strategy



### **Strong CP problem**

# **Strong CP problem**

$$S_{\rm QCD} = \int d^4x \left[ \mathcal{L}_{quarks} - \theta \frac{g^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} \right]$$

• QCD vacuum angle:  $\bar{\theta} = \theta - \arg(\det M_u \cdot \det M_d)$ 

**QCD** action:

• Experimental upper bound on the angle:  $\bar{\theta} \lesssim 10^{-10}$ ,  $_{06 \text{ Baker et.al.}}$ 

#### How to explain the smallness?

# **Strong CP problem**

 $\bar{\theta} \lesssim 10^{-10}$ 

# $\bullet~{\rm CP}$ symmetry is maximally broken by CKM phase: $\delta_{\rm CKM} \sim 1$

• The challenge for model building: O(1) CP phase quark mass matrices  $\downarrow$   $| \arg(\det M_u \cdot \det M_d) | \sim 1$   $\downarrow$  $\bar{\theta} \gg 10^{-10}$  Some mechanism needs!

### Solution to Strong CP problem

#### Axion: a dynamical solution to Strong CP problem

Θ-parameter becomes a dynamical field θeff

 $heta
ightarrow heta _{
m eff}$  (axion field )

$$\mathcal{L}_{\theta} = -\theta \frac{g^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} \quad \rightarrow \quad \mathcal{L} = -\theta_{\text{eff}} \frac{g^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$

Axion obtains potential by non-perturbative QCD effect



lackstyle At the potential minimum, Strong CP problem is solved!  $\langle \bar{\theta} \rangle = 0$ 

### A concrete axion model

KSVZ model'79 Kim, '80 Shifman, Vainshtein, Zakharov

 $\mathcal{L} 
i \Phi q_L ar{q}_R$  (extra quarks)

PQ symmetry

$$\Phi \to e^{i\alpha} \Phi, \ q_L \to e^{-i\alpha} q_L, \ \bar{q}_R \to \bar{q}_R$$

U(1)PQ - SU(3)c - SU(3)c triangle anomaly is nonzero

**U(1)PQ** 
$$\checkmark$$
 SU(3)c  $\neq 0 \leftrightarrow \partial j_{PQ} = \frac{g^2}{32\pi^2} G\tilde{G}$ 

SSB of U(1)PQ gives axion

$$\Phi \ni \frac{1}{\sqrt{2}} f_a e^{i\frac{a}{f_a}} \qquad \begin{array}{c} a: \text{ axion field} \\ f_a: \text{ axion decay constant} \end{array}$$

$$\langle \Phi \rangle \neq 0 \rightarrow \frac{a}{f_a} \frac{g^2}{32\pi^2} G \tilde{G}(x)$$

### Gravity may break PQ symmetry badly

If physics at Planck scale explicitly breaks PQ symmetry

$$\mathcal{L} \ni \sum_{k=1,2,\dots} \left( \lambda_k \frac{\Phi^{k+4}}{M_{\text{pl}}^k} + \tilde{\lambda}_k \frac{|\Phi^{2k}|\Phi}{M_{\text{pl}}^k} + h.c. + \dots \right) \\ \lambda_k, \ \tilde{\lambda}_k: \text{dimensionless couplings}$$

Axion potential is affected by Planck mass suppressed terms

$$V \sim -m_a^2 f_a^2 \cos\left(\frac{a}{f_a}\right) + \left(\lambda_1 \frac{(f_a/\sqrt{2})^5}{M_{\rm pl}} e^{i5a/f_a} + h.c.\right) + \dots$$

original axion potential

# Gravity may break PQ symmetry badly



 $\langle \theta \rangle \sim 1$  without very very tiny parameters

# Quality problem in axion model

More quantitatively,  
Shift of axion VEV should be smaller than 10<sup>-10</sup>  
$$V(a) \sim m_a^2 a^2 + |\lambda_1| \frac{f_a^5}{\sqrt{2^5} M_{\text{pl}}} \left( \left( \frac{5a}{f_a} \right)^2 + \frac{5a}{f_a} \delta \right) + \dots$$
$$\sim \Lambda_{QCD}^4 \frac{a^2}{f_a^2} + |\lambda_1| \frac{f_a^4}{\sqrt{2^5} M_{\text{pl}}} \frac{5a}{f_a} \delta$$
$$\sim \Lambda_{QCD}^4 \left( \frac{a}{f_a} + |\lambda_1| \frac{f_a^4}{\sqrt{2^5} M_{\text{pl}}} \frac{5}{f_a} \delta \right)^2$$
$$|\Delta \theta| = |\left\langle \frac{a}{f_a} \right\rangle| = |\lambda_1| \frac{f_a^5}{\sqrt{2^5} M_{\text{pl}}} \frac{5}{\Lambda_{QCD}} \frac{5}{2} \delta < 10^{-10}$$

Couplings must be extremely tiny

$$|\lambda_1| < 10^{-56} \left(\frac{10^{12} \ GeV}{f_a}\right)^5 \left(\frac{\Lambda_{QCD}}{0.1 \ GeV}\right)^4 \quad \text{for } \delta = O(1)$$

Axion Quality Problem !!

# Addressing axion quality problem

Mechanism only allows highly Planck mass suppressed terms

$$V \sim \frac{\Phi^{12}}{M_{\rm PL}^8} + \frac{\Phi^{13}}{M_{\rm PL}^9} + \dots$$

e.g. using (new) gauge symmetry

Mechanism suppresses coefficients

$$V\sim\lambdarac{\Phi^5}{M_{
m PL}}+\dots\;,\lambda\ll 1$$
e.g. conformal dynamics

• Mechanism gives large axion mass around thetabar=0  $V \sim \frac{1}{2}m_a^2 a^2 + \lambda \frac{\Phi^5}{M_{\rm PL}} \dots, m_a^2 \gg \frac{\Lambda_{\rm QCD}^4}{f_a^2}$ e.g. visible axion model • No axion (another quality problem?) e.g. Nelson-Barr model

### Our models to address quality problem

### "Gauged" PQ symmetry

'17 H. Fukuda, M. Ibe, M.S., T. T. Yanagida

#### Solving quality problem: protecting axion by gauge symmetry





A linear combination of two U(1)PQ's cancel the anomaly and is gauged

$$U(1)_{gPQ} \equiv c_1 U(1)_{PQ_1} + c_2 U(1)_{PQ_2}$$
$$U(1)_{gPQ} = 0$$
$$U(1)_{gPQ} = 0$$
$$U(1)_{gPQ} = 0$$

# Cosmology of "Gauged" PQ symmetry



We have two scenarios that may work



### Solution to DW problem?

'19 '20 T. Hiramatsu, M. Ibe, M. Suzuki



### **Spontaneous CP violation model**

'84 Nelson, '84 Barr



# **Nelson-Barr type model**

**A simple model** '91 L. Bento, G. C. Branco, and P. A. Parada

$$\begin{array}{c} \mbox{SM quark sector} \\ Q_f, \ \bar{u}_f, \ \bar{d}_f \end{array} & \begin{array}{c} \eta_a \\ \arg\langle \eta_a \rangle \neq 0 \end{array} & \begin{array}{c} \mbox{vector-like quarks} \\ q, \ \bar{q} \end{array} \\ \mathcal{L} \supset + \sum_{f,f'} Y^d_{f,f'} HQ_f \bar{d}_{f'} & + \sum_{a,f} a^d_{af} \eta_a q \bar{d}_f \end{array} & + \mu q \bar{q} \end{array}$$

• The theta angle is zero at tree level:  $\bar{\theta} = \theta - \arg(\det \hat{M}_u \cdot \det \hat{M}_d) = 0$ 

Dangetous terms:  

$$\sum_{f} HQ_{f}\bar{q} + \sum_{a} \eta_{a}q\bar{q} \qquad \frac{\eta_{b}^{*}}{\Lambda}\eta_{a}q\bar{q} + \frac{\eta_{a}^{*}}{\Lambda}HQ\bar{q}$$

$$\mathcal{L} \supset \gamma_{ab}\eta_{a}^{*}\eta_{b}H^{\dagger}H + \gamma_{abcd}\eta_{a}\eta_{b}\eta_{c}^{*}\eta_{d}^{*} + \text{h.c.}$$
+ flavor sym violating terms



# A natural model



- $\checkmark$  5d profiles  $\rightarrow$  avoid dangerous term, small corrections
- 🗹 Hierarchy problem
- **Flavor structures**

radion stabilization in three branes '21 S. J. Lee, Y. Nakai, M.S. 🔽 cosmology, GWs production

'23 S. Girmohanta, S. J. Lee, Y. Nakai, M.S.

### "Just a curiocity"

#### **Another view of Strong CP problem or its solutions?**

- Generalized symmetries, (-1)-form symmetry
- Understanding Strong CP problem in a different manner? New way to solve Strong CP problem? Replacing the Strong CP problem to another problem?

# **Review: higher-form symmetries**

### **Generalized symmetries**

'14 A. Kupstin, N. Seiberg '14 D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett



### **Generalized symmetries**



0-form symmetry

Codimension 1, i.e. (4-1)-dim, topological operator  $U_g(M^{(d-1)}) = \exp(i\alpha \int_{M^{(d-1)}} \star j)$ 

### **Generalized symmetries**

#### p-form symmetry (p=0,1,2...)

#### p-form symmetry

Codimension (p+1), i.e. (4-(p+1))-dim, topological operator

$$U(\Sigma_{d-(p+1)}) = \exp(i\alpha \int_{\Sigma_{d-(p+1)}} \star j)$$

$$U(\Sigma_{d-(p+1)}) = U(\Sigma'_{d-(p+1)})$$

# 1-form symmetry in 4d Maxwell Theory

• d=4 Maxwell theory  

$$S[a] = \int -\frac{1}{2e^2}F \wedge \star F = \int d^4x - \frac{1}{4e^2}F_{\mu\nu}F^{\mu\nu}$$
EOM:  $d \star F = 0$   
Bianchi identity:  $dF = 0$ 

Two conserved currents

$$d \star F = 0 \quad \Rightarrow \quad \star j_e = \star F$$
$$dF = 0 \quad \Rightarrow \quad \star j_m = F$$

Two symmetry generators (topological operators)

$$U_g^e(S^2) = \exp(i\alpha \int_{S^2} \star j_e) \quad U_g^m(S^2) = \exp(i\alpha \int_{S^2} \star j_m)$$

# 1-form symmetry in 4d Maxwell Theory



# 1-form symmetry in 4d Maxwell Theory

Gauging electric 1-form symmetry

$$A \to A + \Omega(x)$$
$$F \to F + d\Omega(x)$$
$$B_e \to B_e + d\Omega(x)$$
$$f(F - B_e) \wedge \star (F - B_e)$$

SSB of electric 1-form symmetry

Stuckelberg mass term, gauge fields obtain mass

### (-1)-form symmetry

# (-1)-form symmetry?

• p-form symmetry generator  $U(\Sigma_{d-(p+1)}) = \exp(i\alpha \int_{\Sigma_{d-(p+1)}} \star j)$ 

- (-1)-form symmetry generator??  $U(\Sigma_4) = \exp(i\alpha \int_{\Sigma_4} \star j) ?$ 
  - not topological operator (whole spacetime integration)
  - no (or we do not know) charged operators

Not the same to zero or higher-form symmetry Another way to define (-1)-form symmetry? – coupling with background gauge field

# (-1)-form U(1) symmetry

Theory has (-1)-form U(1) symmetry when  $\star j_0(x)$  can linearly couple to periodic background field  $\theta(x)$ D. Aloni, E. García-Valdecasas, M. Reece, M. S.  $e^{-S_E} \mapsto e^{-S_E} \exp(i \int_M \theta(x) \star j_0(x))$  $\theta(x) \cong \theta(x) + 2\pi$ M: spacetime manifold

-  $\star j_0(x)$  (-1)-form U(1) symmetry current -  $\int_M \star j_0(x) \in \mathbb{Z}$  (-1)-form symmetry charge

e.g. 4d 
$$\star j_0 = \frac{1}{8\pi^2} \mathrm{tr}(F \wedge F)$$

– instanton number symmetry<sup>,</sup>19 D. Cordova, D. S. Freed, H. T. Lam, N. Seiberg
 – coupling to background axion field

# (-1)-form U(1) symmetry

Gauging (-1)-form U(1) symmetry

Gauging (-1)-form U(1) symmetry

Background  $\theta \rightarrow$  Dynamical  $\theta$ 

- Analogous to usual gauging  $A \wedge \star j^{(0)} \longleftrightarrow \theta(x) \frac{1}{8\pi^2} \operatorname{Tr}(F \wedge F)$ 

- Axion field is the gauge field for (-1)-form symmetry!

Gauging (-1)-form symmetries are related to any couplings are given by dynamical field VEVs

### SSB of (-1)-form U(1) symmety

D. Aloni, E. García-Valdecasas, M. Reece, M. S. (2024)

# SSB of (-1)-form U(1) symmetry

D. Aloni, E. García-Valdecasas, M. Reece, M. S. (2024)

We have various evidences of SSB of (-1)-form U(1) symmetry

| SSB of 0-form U(1) symmetry      | SSB of (-1)–form U(1) symmetry      |
|----------------------------------|-------------------------------------|
| Photon becomes massive           | Axion obtains potential (mass)      |
| NG boson                         | NG field                            |
| Stueckelberg mass term           | Stueckelberg-like mass term         |
| Dual: string bounded by monopole | Dual: domain wall bounded by string |

# SSB of (-1)-form U(1) symmetry

#### We have various evidences of SSB of (-1)-form U(1) symmetry

| SSB of 0-form U(1) symmetry      | SSB of (-1)–form U(1) symmetry      |
|----------------------------------|-------------------------------------|
| Photon becomes massive           | Axion obtains potential (mass)      |
| NG boson                         | NG field                            |
| Stueckelberg mass term           | Stueckelberg-like mass term         |
| Dual: string bounded by monopole | Dual: domain wall bounded by string |

e.g. axion obtains mass from non-zero topological susceptibility

$$\mathcal{X} = \lim_{q \to 0} i q^{\mu} q^{\nu} \int e^{iqx} \langle 0|TK_{\mu}(x)K_{\nu}(0)|0\rangle d^{4}x \\ \partial^{\mu}K_{\mu} \sim F\tilde{F}$$

# SSB of (-1)-form U(1) symmetry

#### We have various evidences of SSB of (-1)-form U(1) symmetry

| SSB of 0-form U(1) symmetry      | SSB of (-1)–form U(1) symmetry      |
|----------------------------------|-------------------------------------|
| Photon becomes massive           | Axion obtains potential (mass)      |
| NG boson                         | NG field                            |
| Stueckelberg mass term           | Stueckelberg-like mass term         |
| Dual: string bounded by monopole | Dual: domain wall bounded by string |

e.g. axion obtains mass from non-zero topological susceptibility

$$\mathcal{X} = \lim_{q \to 0} i q^{\mu} q^{\nu} \int e^{iqx} \langle 0|TK_{\mu}(x)K_{\nu}(0)|0\rangle d^{4}x \\ \partial^{\mu}K_{\mu} \sim F\tilde{F}$$

Pole at  $q^2 = 0 \rightarrow NG$  field

$$q^{\mu}q^{\nu}\int e^{iqx}\langle 0|TK_{\mu}(x)K_{\nu}(0)|0\rangle d^{4}x \propto \frac{q_{\mu}q_{\nu}}{q^{2}}\frac{1}{q^{2}}$$

### **Order paramerer of SSB**

#### We have various evidences of SSB of (-1)-form U(1) symmetry

| SSB of 0-form U(1) symmetry      | SSB of (-1)–form U(1) symmetry      |
|----------------------------------|-------------------------------------|
| Photon becomes massive           | Axion obtains potential (mass)      |
| NG boson                         | NG field                            |
| Stueckelberg mass term           | Stueckelberg-like mass term         |
| Dual: string bounded by monopole | Dual: domain wall bounded by string |

Order parameter of SSB of (-1)-form U(1) symmetry

Vacuum energy density  $E(\theta)$  that depends on theta-angle

# Strong CP problem & (-1)-form symmetry

The Strong CP problem

- → Partition function depends on  $\theta$ = Generating "functional" with  $\theta$ -term as an external source term
- $\rightarrow$  Vacuum energy density depends on  $\theta$
- $\rightarrow$  SSB of the (-1)-form U(1) symmetry

A sufficient condition of Strong CP problem

#### If we encounter Strong CP problem, there is SSB of global (-1)-form U(1) symmetry

# Strong CP problem & (-1)-form symmetry

Equivalently,

A necessary condition to solve Strong CP problem

### If SSB of global (-1)-form U(1) symmetry is avoided Strong CP problem is solved



Gauging the (-1)-form U(1) symmetry satisfies this condition
 i.e. axion, massless quark solutions

Explicit breaking of the (-1)-form symmetry?
 E. García-Valdecasas, M. Reece, M. S. (2024)

# **Summary & Outlook**

#### Summary

- (-1)-form U(1) sym ~ instanton number sym
- Gauging ~ axion field
- SSB ~ vacuum energy density E(theta)
- Strong CP problem –> SSB of global (-1)-form
- Still looking for new solutions

#### Outlook

- More on NG theorem for (-1)-form sym?
- Hierarchy problem & (-1)-form sym?
- More on explicit breaking of (-1)-form sym?
- Axion quality problem & (-1)-form sym?
   etc.





### **Concrete model**

#### Axion: pseudo-NG boson from SSB of U(1)PQ symmetry

KSVZ model '79 Kim, '79 Shifman, Veinshtein, Zakharov

$$\mathcal{L} = -\phi Q \bar{Q}$$

U(1)PQ symmetry

$$\phi \to e^{i2\alpha}\phi, \ Q \to e^{-i\alpha}Q, \ \bar{Q} \to e^{-i\alpha}\bar{Q}$$

φ: PQ field

U(1)PQ - SU(3)c - SU(3)c triangle anomaly is nonzero

$$\textbf{U(1)PQ} \checkmark \begin{array}{c} \bigvee SU(3)c \\ \bigvee SU(3)c \end{array} \neq 0 ~ \nleftrightarrow ~ \partial j_{PQ} = \frac{g^2}{32\pi^2} G\tilde{G}$$

SSB of U(1)PQ gives axion

$$\begin{split} \langle \phi \rangle \neq 0 & \rightarrow \mathcal{L} = -\theta(x) \frac{g^2}{32\pi^2} G \tilde{G}(x) \\ \phi \sim v e^{i\theta(x)} \end{split}$$

# **Axion Cosmology**

#### **Two standard scenarios**

