THE MEG II COLLABORATION **ALP SEARCHES AT MEG II**

TOSHINORI MORI

MEG II DETECTOR MEG II – SEARCHING FOR $\mu \rightarrow e\gamma$ **DECAY**

Thin-wall SC solenoid (gradient B-filed: 1.3→0.5 T)

higher intensity higher resolution higher efficiency

Search for μ+ → e+γ down to 6×10⁻¹⁴ (90% C.L. sensitivity)

> Radiative decay counter (identify high-energy BG γ events)

Euro. Phys. J. C(2024) 84:190

electron neutrino

muon neutrino

Grand Unification

top

bottom

tau

WHY $\mu \rightarrow e\gamma$?

Grand Unification

top

bottom

tau

WHY $\mu \rightarrow e\gamma$?

top

Grand

WHY $\mu \rightarrow e\gamma$?

BIG PICTURE

grand unification charge quantization

> Flavor violation from quark Yukawa

GUT

Leptogenesis

seesaw mechanism neutrino masses

Flavor violation from neutrino Yukawa

TeV scale physics Dark Matter

SUSY

 $\simeq 10^{-12}$

cLFV search history

HOW TO F

G (1) PS

THE UNIQUE FACILITY FOR $\mu \to e \gamma$ SEARCH

Provides world's most powerful DC muon beam > 10⁸/sec

Thin-wall SC solenoid with a only high-momentum positrons with minimum detector material

PIXELATED TIMING COUNTER

CYLINDRICAL DRIFT CHAMBER

(3) 2.7TON LIQUID XENON PHOTON DETECTOR (LXE)

Scintillation light from 900 liter LXe is detected by SiPM & PMTs mounted on all surfaces

Fast response & high light yield provide good resolutions of energy, time, & position

Gas/liquid circulation system to purify xenon

Ultimate uniformity & purity unachieval crystal calorimeter

MEG II DATA

UNBLINDED 2021 PILOT DATA

66 events in Analysis Region (Sideband estimate 68.0 ± 3.5)

4D distribution

SUMMARY AND PROSPECTS

 The first 7-week data in 2021 achieved a Sensitivity ~60% of MEG 2009-2013.

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

• A combination MEG + MEG II provides the most stringent limit on the branching ratio of $\mu^+ \rightarrow e^+ \gamma$

$$\mathscr{B}_{90} = 3.1 \times 10^{-13}$$

Expect to finish the 2022 data analysis this autumn

Euro. Phys. J. C (2024) 84:216

							ļ
· · · ·							
		-			-	-	
-					-	-	
					-		
-	-		-		-	-	
-	-		-		-	-	
•	-						
	-	-			-	-	
						-	
					-	-	
					-	-	
	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-							
-							
(-		-	_	-		

SUMMARY AND PROSPECTS

 The first 7-week data in 2021 achieved a Sensitivity ~60% of MEG 2009-2013.

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

• A combination MEG + MEG II provides the most stringent limit on the branching ratio of $\mu^+ \rightarrow e^+ \gamma$

$$\mathscr{B}_{90} = 3.1 \times 10^{-13}$$

Expect to finish the 2022 data analysis this autumn

Euro. Phys. J. C (2024) 84:216

							ļ
· · · ·							
		-			-	-	
-					-	-	
					-		
-	-		-		-	-	
-	-		-		-	-	
•	-						
	-	-			-	-	
						-	
					-	-	
					-	-	
	-	-	-	-	-	-	
-	-	-	-	-	-	-	
-							
-							
(-		-	_	-		

SUMMARY AND PROSPECTS

 The first 7-week data in 2021 achieved a Sensitivity ~60% of MEG 2009-2013.

$$\mathscr{B}_{90} = 7.5 \times 10^{-13}$$

• A combination MEG + MEG II provides the most stringent limit on the branching ratio of $\mu^+ \rightarrow e^+ \gamma$

$$\mathscr{B}_{90} = 3.1 \times 10^{-13}$$

Expect to finish the 2022 data analysis this autumn

Euro. Phys. J. C (2024) 84:216

	1						
				-	-	-	
-				-	-	-	
				-		-	
-	1	1		~	~	~	
			-	-	-	-	
	-	-	-				
	-	-	-	-	-	-	
				-	-	-	Ì
				-	-	-	
-				-	-	-	1
-				-	-	-	
-				-	-	-	
-	-	-		-	-	-	
		-		-	-	-	
	-	-	-	-	-	-	

AXION-LIKE PARTICLES THAT VIOLATE LEPTON FLAVOUR

a

 $\mu \rightarrow e\gamma$

MEG II optimised to measure this event!

 $\mu \rightarrow e\gamma$

MEG II optimised to measure this event!

 $\mu \rightarrow ea\gamma$

 $\mu \rightarrow e\gamma$

MEG II optimised to measure this event!

 $\mu \rightarrow ea\gamma$

e^+

A back-to-back 2-body decay

The photon vertex cannot be measured

The photon vertex is not measured but is reconstructed to fit the 2-body kinematics

Euro. Phys. J. C80, 858 (2020)

(1) $\mu \rightarrow ea \rightarrow e\gamma\gamma \text{ AT MEG I}$

(1) $\mu \rightarrow ea \rightarrow e\gamma\gamma \text{ AT MEG I}$

A total of 5 events were found, but the significance is 1.3σ including the look-elsewhere effect.

Best upper limits for 20-40 MeV/c² exceeding the Crystal Box result that searched for a more generic 3-body decays

(1) $\mu \rightarrow ea \rightarrow e\gamma\gamma$ AT MEG I

to reject the background by better kinematical constraints

MEG II will bring 10x statistics and better photon reconstruction

(2) $\mu \rightarrow ea\gamma$ AT MEG II

Trigger / selection need to be loosened: - much lower photon energy

no back-to-back topology

- They just look like radiative muon decays (RMD):

Trigger / selection need to be loosened: - much lower photon energy

- no back-to-back topology

- They just look like radiative muon decays (RMD):

Study the RMD!

$\mu \rightarrow e a \gamma$ AT MEG II

 $2f_a$

axial and vectorial LFV of the ALP

electron coupling of the ALP

Ja

Our theorist friends kindly pointed out* that MEG's RMD study cannot exceed the existing TWIST's upper limit; i.e. a dedicated run with loosened trigger conditions at lower beam rates might be needed.

 $\mathbf{2}$

*Y. Jho, S. Knapen, D. Redigolo, arXiv:2203.11222 MEG, Eur. Phys. J. C76 (2016) 108 TWIST, Phys. Rev. D91 (2015) 052020

$\mu \rightarrow e a \gamma \text{ AT MEG II}$ (2)

missing mass squared (MeV²)

NEED TO RUN AT LOWER BEAM RATE & LOWER $E_{ m v}$ threshold

Acceptance ALP for Ey cut

<u>Actually we already have such data samples.</u> Taken for a total of 8-9 days in 2021-2023 for calibrations: $R_{\mu} = (0.9 - 2.0) \times 10^6$ /sec, $E_{\gamma} > 18 - 20$ MeV

evaluation by toy MC

missing mass squared (MeV²)

$\mu \rightarrow ea\gamma \text{ AT MEG II}$ (2)

<u>A preliminary analysis indicates we can probably exceed TWIST with this sample!</u>

(2) $\mu \rightarrow e a \gamma \text{ AT MEG II}$

<u>A preliminary analysis indicates we can probably exceed TWIST with this sample!</u>

already stronger than cooling bounds!

EXTRA – ATOMKI'S "17MEV BOSON" (3)

Phys. Rev. D 95, 035017

EXTRA – ATOMKI'S "17MEV BOSON" (3)

Phys. Rev. D 95, 035017

dedicated Cockcroft-Walton accelerator & beam line

EXTRA – ATOMKI'S "17MEV BOSON" (3)

The Strength of MEG II

- reconstruct e^+e^- trajectories
- measure background photons
- properly normalise events

EXTRA – ATOMKI'S "17MEV BOSON" $(\mathbf{3})$

STAY TUNED FOR UPCOMING RESULTS OF MEG II !

