Spectroscopy in decays overview with a focus on LHCb exotics

Ivan Polyakov

GDR QCD, InF and Gluodynamics workshop, Orsay, 17 December 2024

Outlook

- History Message
- Conventional hadron spectroscopy
- Exotic hadron spectroscopy
 - Quick overview
 - Reflection
 - T_{cc} [ccud]
 - Prospects
- Conclusion

Ann Rev Nucl, 74 (2024) 583

Annual Review of Nuclear and Particle Science Exotic Hadrons at LHCb

Daniel Johnson,¹ Ivan Polyakov,² Tomasz Skwarnicki,³ and Mengzhen Wang⁴

arXiv:2410.06923

A Brief Guide to Exotic Hadrons

Nils Hüsken,
1 Elisabetta Spadaro Norella,
2 and Ivan Polyakov 3

What is Spectroscopy?

Ivan Polyakov

3

Frequency(Hz)

What is Spectroscopy?

String oscillation harmonics

Radial wave functions of electron in Hydrogen atom

Radial wave functions of $b\overline{b}$ quark system

Spectra of piano note B3

Hydrogen emission spectrum

Mass spectra of Y(nS) states

Why decays?

$K\to\pi\pi$ in 1947

$J/\psi \to e^-e^+ \ in \ 1974$

 $Z \rightarrow e^-e^+$ in 1983

$H \rightarrow \gamma \gamma$ in 2012

Light (conventional) hadrons

m_{u.d}~ 2-5 MeV

- Highly non-perturbative regime
- Extract effective parameters from ground states (1st harmonics)

[Karliner&Rosner, PRD 90, 094007 (2014); Gasiorowicz&Rosner, Am. J. Phys. 49 (1981) 954]

State (mas	s Spin	Expression for mass	Predicted
in MeV)		[24]	mass (MeV)
$\pi(138)$	0	$2m_{a}^{m}-6b/(m_{a}^{m})^{2}$	140
$\rho(775), \omega(78)$	2) 1	$2m_{a}^{\dot{m}}+2b/(m_{a}^{\dot{m}})^{2}$	780
K(496)	0	$m_{a}^{m} + m_{s}^{m} - 6b/(m_{a}^{m}m_{s}^{m})$	485
$K^{*}(894)$	1	$m_{a}^{m} + m_{s}^{m} + 2b/(m_{a}^{m}m_{s}^{m})$	896
$\phi(1019)$	1	$2m_s^m + 2b/(m_s^m)^2$	1032
State (mass	Spin	Expression for mass	Predicted
in MeV)		[24]	mass (MeV)
N(939)	1/2	$3m_{q}^{b} - 3a/(m_{q}^{b})^{2}$	939
$\Delta(1232)$	3/2	$3m_{q}^{b} + 3a/(m_{q}^{b})^{2}$	1239
$\Lambda(1116)$	1/2	$2m_{q}^{b} + m_{s}^{b} - 3a/(m_{q}^{b})^{2}$	1114
$\Sigma(1193)$	$1/2 \ 2m$	$m_{a}^{b} + m_{s}^{b} + a/(m_{a}^{b})^{2} - 4a/m_{a}^{b}m_{s}^{b}$	1179
$\Sigma(1385)$	3/2 2m	$m_{a}^{b} + m_{s}^{b} + a/(m_{a}^{b})^{2} + 2a/m_{a}^{b}m_{s}^{b}$	1381
$\Xi(1318)$	1/2 2m	$m_{s}^{b} + m_{q}^{b} + a/(m_{s}^{b})^{2} - 4a/m_{a}^{b}m_{s}^{b}$	1327
$\Xi(1530)$	3/2 2m	$m_{s}^{b} + m_{q}^{b} + a/(m_{s}^{b})^{2} + 2a/m_{a}^{b}m_{s}^{b}$	1529
$\Omega(1672)$	3/2	$3m_{s}^{b} + 3a/(m_{s}^{b})^{2}$	1682

good description within 10 MeV! Ivan Polyakov

m_~ 100 MeV $\Lambda_{_{OCD}} \sim 200 \text{ MeV}$ baryons mesons q, q, J=1/2 J=3/2 **J=0 J=1** 2000 [Durr et al.. Science 322:1224-1227,2008] 1500 M[MeV] 000 ____K* ₽ ---- N experiment 500 width input π QCD (Lattice

Quarkonia

- Heavy quarks \rightarrow semi-perturbative regime
- Much clearer systems
- Great progress

[Eichten, Godfrey, Mahlke, Rosner, Rev Mod Phys 80 (2007)]

Potential between two quarks (Cornell model)

 $m_{u,d} \sim 2-5 \text{ MeV}$ $m_{s} \sim 100 \text{ MeV}$ $\Lambda_{QCD} \sim 200 \text{ MeV}$ $m_{c} \sim 1300 \text{ MeV}$ $m_{b} \sim 4200 \text{ MeV}$

Other Heavy hadrons

- Rich structure in Qq and Qqq' hadrons with heavy quarks
- One example: D⁰ [cu] excitations

 $m_{u,d} \sim 2-5 \text{ MeV}$ $m_{s} \sim 100 \text{ MeV}$ $\Lambda_{QCD} \sim 200 \text{ MeV}$ $m_{c} \sim 1300 \text{ MeV}$ $m_{b} \sim 4200 \text{ MeV}$

Other Heavy hadrons

- Rich structure in Qq and Qqq' hadrons with heavy quarks
- Lots of results from the LHC (mainly by LHCb)

Conventional is not enough

Progress limited by quark configurations studied

- 4/5/...-quark states (exotic hadrons) have been anticipated since 60's
- No success in light sector
 - First candidates for tetraquarks in 90's: f₀(500), K*₀(800), ... later D*_{s1} (2317), ...

no clear conclusion reached due to large widths & theoretical ambiguities

Fazio, 2004 Eidelman, Gutsche, Hanhart, Mitchell, Spanier, 2020 (PDG)

Pentaquark O⁺ [uudds] in 2003 later shown to be false

Trilling, 2006 (PDG)

First exotic hadrons

- First one uniquely identified as exotic was $\chi_{c1}(3872)$ discovered in heavy sector in 2003;
- First pentaquark in 2015 in heavy sector as well;

much smaller widths and clearer understanding of cc allowed to exclude conventional interpretations

50+ exotic hadron candidates

N. Hüsken, E. S. Norella, I. Polyakov

Table 2. All known exotic hadron candidates up to date. States we consider well-established are underscored.

Category			States / Candidates	
Meson-like (incl. tetraquarks)			χ -like: $\chi_{c1}(3872),$ $\chi_{c0}(3860), \ \underline{\chi_{c0}(3915)}, \ \underline{\chi_{c2}(3930)}, \ X(3940)$	
		I = 0	ψ -like: $\psi(4230), \ \psi(4360), \ \psi(4660)$	
	Hidden Charm		with $s\overline{s}$: $\chi_{c1}(4140)$, $\chi_{c1}(4274)$, $\chi_{c1}(4685)$, $\chi_{c1}(4500)$, $\chi_{c1}(4700)$ $X(4150)$, $\overline{X}(4630)$, $X(4740)$	
		I = 1/2	$T_{c\overline{c}s}(3985)^-, T_{c\overline{c}s1}(4000)^{-/0}, T_{c\overline{c}s1}(4220)^-$	
		I = 1	seen in e^+e^- : $\frac{T_{c\overline{c}1}(3900)^{+/0}}{T_{c\overline{c}}(4020)^+}, \frac{T_{c\overline{c}}(4055)^+}{T_{c\overline{c}}(4055)^+},$	
			seen in <i>B</i> decays: $T_{c\overline{c}}(4050)^+$, $T_{c\overline{c}}(4100)^+$, $T_{c\overline{c}1}(4200)^+$, $T_{c\overline{c}}(4240)^+$, $T_{c\overline{c}}(4250)^+$, $\underline{T_{c\overline{c}1}}(4430)^+$	
		I = 0	$\Upsilon(10753), \underline{\Upsilon(10860)}, \underline{\Upsilon(11020)}$	
	Hidden Beauty	I = 1	$T_{b\bar{b}1}(10610)^+, T_{b\bar{b}1}(10650)^+$	
	Hidden Double Charm		$T_{c\overline{c}c\overline{c}}(6550), \ \underline{T_{c\overline{c}c\overline{c}}}(6900), \ T_{c\overline{c}c\overline{c}}(7290)$	
	On an Single Chann		D_s^* -like: $\underline{D_{s0}^*(2317)^+}, \underline{D_{s1}(2460)^+}$	
	Open Single Charm		$T_{cs/c\overline{s}}: T_{cs0}(2900)^0, T_{c\overline{s}0}(2900)^{0/++}, T_{cs1}(2900)^0$	
	Open Double Charm		$T_{cc}(3875)^+$	
Baryon-like (incl. pentaquarks)	Hidden Charm	I = 1/2(3/2)	$\frac{P_{c\overline{c}}(4312)^+, P_{c\overline{c}}(4440)^+, P_{c\overline{c}}(4457)^+}{P_{c\overline{c}}(4380)^+, P_{c\overline{c}}(4337)^+}$	
		I = 0(1)	$P_{c\overline{c}s}(4458)^0, P_{c\overline{c}s}(4338)^0$	

23 at the LHC, 21 of them by LHCb

χ_c-like (aka X) , >4 GeV

states:

• $I^G(J^{PC}) = 0^+(0^{++}): \chi_{c0}(3860), \underline{\chi_{c0}(3915)}$

also known as X(3915)

• $I^G(J^{PC}) = 0^+(2^{++}): \chi_{c2}(3930)$ • $I^G(J^{PC}) = ??(???): X(3940)$

minimal quark content: $[c\overline{c}]$, possibly $[c\overline{c}q\overline{q}]$ experiments: BaBar, Belle, BESIII, LHCb production: $\gamma\gamma$ -collisions and B-decays, e⁺e⁻ / pp collisions

decay modes: $D\bar{D}$ (except X(3940)), $D^*\bar{D}$ (X(3940)), $\omega J/\psi$ ($\chi_{c0}(3915)$) nearby thresholds: $D^*\bar{D}$, $D_s^+D_s^$ characteristic widths: ~200 MeV ($\chi_{c0}(3860)$) and 19-37 MeV ($\chi_{c0}(3915)$, $\chi_{c2}(3930)$, X(394)

Fig.

LHCb 116

9. Resonances in $J/\psi\phi$ at 116

ψ-like (aka Y) states: $\psi(4230), \psi(4360), \psi(4660)$ also known as $Y(4230), \psi(4260), Y(4360), \dots$ quantum numbers: $I^G(J^{PC}) = 0^{-}(1^{--})$ minimal quark content: $[c\overline{c}]$, possibly $[c\overline{c}q\overline{q}]$ or $[c\overline{c}g]$ experiments: BaBar, CLEO, Belle, BESIII, possibly D0 production: e^+e^- annihilation, possibly b-decays ($\psi(4230)$) decay modes: $\pi \pi J/\psi$, $\pi \pi \psi(2S)$, $\pi \pi h_c$ η^(·)J/ψ, KKJ/ψ, 3πη_c, ωχ_{c0}, γχ_{c1}(3872), ... μμ, D^{*} \overline{D} π, D \overline{D} ππ, ... nearby threshold: $D_1 \overline{D}$ characteristic widths: 48-118 MeV

16

$T_{c\bar{c}}$ states (aka Z_c)

seen in b-hadron decays

states:

- $I^G(J^{PC}) = 1^+(1^{+-}): T_{c\bar{c}1}(4200)^+, \underline{T_{c\bar{c}1}}(4430)^+$
- $I^{G}(J^{PC}) = 1^{+}(?^{-}): T_{c\overline{c}}(4240)^{+}$ also known as $R_{c0}(4240), Z_{c}(4240)$
- $I^G(J^{PC}) = 1^-(?^{+}): T_{c\bar{c}}(4050)^+, T_{c\bar{c}}(4100)^+, T_{c\bar{c}}(4250)^+$

minimal quark content: $[c\bar{c}q\bar{q}']$ experiments: Belle, LHCb production: $\bar{B}^0 \to (c\bar{c})\pi^+K^-$, where $(c\bar{c}) = J/\psi, \ \psi(2S), \ \eta_c, \ \chi_{c1}$ $T_{c\bar{c}}(4200)$ also potentially in $\Lambda_b \to J/\psi\pi^-p$

decay modes: $J/\psi\pi^+$, $\psi(2S)\pi^+$, $\eta_c\pi^+$, $\chi_{c1}\pi^+$ nearby threshold: $D^*\bar{D}^*$ characteristic widths: 82-370 MeV

$P_{c\bar{c}}$ states (aka P_c)

states: $P_{c\bar{c}}(4312)^+$, $P_{c\bar{c}}(4440)^+$, $P_{c\bar{c}}(4457)^+$, $P_{c\bar{c}}(4380)^+$, $P_{c\bar{c}}(4337)^+$ minimal quark content: $[c\bar{c}uud]$ experiments: LHCb production: $\Lambda_b \to J/\psi p K^-$, likely $\Lambda_b \to J/\psi p \pi^-$ ($P_{c\bar{c}}(4440|4457)$), $B_s^0 \to J/\psi p \bar{p}$ ($P_{c\bar{c}}(4337)$) decay modes: $J/\psi p$ nearby threshold: $\Sigma_c^+ \bar{D}^{(*)0}$ characteristic widths: 10-30 MeV and ~205 MeV ($P_{c\bar{c}}(4380)$)

$P_{c\bar{c}s}$ states (aka P_{cs})

states:

- $I(J^P) = 0(1/2^-)$: $P_{c\bar{c}s}(4338)^0$
- $I(J^P) = 0(?): P_{c\bar{c}s}(4458)^0$

minimal quark content: $[c\bar{c}uds]$ experiments: LHCb production: $B^- \rightarrow J/\psi\Lambda\bar{p} \ (P_{c\bar{c}s}(4338)),$ $\Xi_b \rightarrow J/\psi\Lambda K^- \ (P_{c\bar{c}s}(4458))$ decay modes: $J/\psi\Lambda$ nearby thresholds: $\Xi_c^+ D^-, \ \Xi_c^0 \bar{D}^{*0}$ characteristic widths: 7-17 MeV

Exotic bottomonium

analog to ψ -like states from charmonia sector

$$\begin{split} & \Upsilon\text{-like} \\ \text{states: } \underbrace{\Upsilon(10753)}_{also\ known\ as\ } \underbrace{\Upsilon(10860)}_{\Upsilon(5S),\ \Upsilon(11020)}_{(6S)} \\ & \text{quantum numbers: } I^G(J^{PC}) = 0^-(1^{--}) \\ & \text{minimal quark content: } [b\bar{b}],\ \text{possibly } [b\bar{b}q\bar{q}] \text{ or } [b\bar{b}g] \\ & \text{experiments: CUSB, CLEO, BaBar, Belle, Belle II} \\ & \text{production: } e^+e^- \text{ annihilation} \\ & \text{decay modes: all in } \pi^+\pi^-\Upsilon(nS)\ (n=1,2,3), \\ & \text{also } \omega\chi_{b1,2}(1P) \text{ for } \Upsilon(10753)\ (\text{and possibly } \Upsilon(10860)), \\ & \pi^+\pi^-h_b(nP)\ (n=1,2),\ \text{and possibly } \pi^+\pi^-\pi^0\chi_{b1,2}(1P) \\ & \text{nearby thresholds: } B_s\bar{B}_s,\ B_s\bar{B}_s^*,\ B_s^*\bar{B}_s^* \\ & \text{characteristic widths: } 24\text{-}37\,\text{MeV} \end{split}$$

Exotic bottomonium

analog to $T_{c\bar{c}}$ states from charmonia sector

$T_{b\bar{b}}$ states (aka Z_b)

states: $\underline{T_{b\bar{b}1}(10610)^+}, \underline{T_{b\bar{b}1}(10650)^+}_{also\ known\ as\ Z_b(10610)^+,\ ...\ or\ T^b_{\Upsilon 1},\ ...\ or\ X(10610),\ ...$ quantum numbers: $I^G(J^{PC}) = 1^+(1^{+-})$ minimal quark content: $[b\bar{b}u\bar{d}]$ experiments: Belle production: $e^+e^- \to T^+_{b\bar{b}}\pi^-$ around the $\Upsilon(10860)$ and $\Upsilon(11020)$ decay modes: $\pi\Upsilon(nS)\ (n = 1, 2, 3),\ \pi h_b(nP)\ (n = 1, 2),\ B^*\bar{B}\ (T_{b\bar{b}1}(10610)),\ B^*\bar{B}^*\ (T_{b\bar{b}1}(10650))$ nearby thresholds: $B^*\bar{B},\ B^*\bar{B}^*$ characteristic widths: 11.5-18.4 MeV

Others

Theory models

* see references in Appendix

48 out of 52 conventional hadrons discovered at LHC 21 out of all ~50 exotic hadrons known to date

Success of LHCb

High b/c quark production rate

 Optimized for b/c-hadron detection

LHCb discovered:

- Excellent decay time resolution
- Excellent momentum resolution
- Excellent particle identification
- Data collected
 - Run1: 1+2 fb⁻¹ at 7 and 8 TeV
 - Run2: 6 fb⁻¹ at 13 TeV
 - Run3: expect 15 fb⁻¹ at 13.6 TeV

LHCb perspective

Access cc-like exotic hadrons in b-hadron decays via:

- B $\rightarrow \psi$ + hadrons, ψ = J/ ψ , ψ (2S), η_c , χ_{cJ} (1P)
- since 2020 also in $B \rightarrow D\overline{D}$ + hadrons
- Γ = 1-20 MeV peak in 1D fit

 χ_{c1} (3872), χ_{c2} (3930), ... $P_{c\bar{c}}$, $P_{c\bar{c}s}$

• f ~ 0.1-1%

- Robust, no info on J^{PC}
- only selected states

F = 50-500 MeV
 4D-7D amplitude analysis

 $\chi_c \rightarrow J/\psi \phi, \ T_{c\bar{c}} \rightarrow (c\bar{c})\pi, \ T_{c\bar{c}s} \rightarrow J/\psi K, \ \dots$

- f ~ 1-10%,
- (often) gives J^{PC}
- get's harder to control interference and coupled channels effects

see more on narrow vs wide states in backup

- A guaranteed observation of 10+ more states with
 - increase in statistics and
 - access to new decay channels

Problem of wide states

Coupled channels

- K-matrix analysis of e⁺e⁻ annihilation in the Bottomonium Region
- Model with 4 vector states

- Complex interplay between different resonances, channels and thresholds
- High standart hard to achieve in other cases

Root of the problem

Interaction potential between quarks

- \rightarrow grouping on $q\overline{q}$ and $q\overline{q}$ is often prefered
- Typical exotic hadron: $[Q\overline{Q}q\overline{q}']$, $[Q\overline{Q}qq'q'']$
 - has many channels to decay to or couple
 - hard to measure & interpret

Need states where it doesn't happen

T_{cc} [ccud]

- Discovery of 2021: signal in D⁰D⁰π⁺ just below D⁰D^{*+} threshold
- Model as $T_{cc}^{+} \rightarrow D^0 D^{*+} (\rightarrow D\pi)$ for I(J^P) of T_{cc} as 0(1⁺)

in this model width defined by $\Gamma(D^{*+})$ and δm

Results:

$$\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$$

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

• 20x more narrow than $\chi_{c1}(3872)$ and 1000x than all other exotics

T_{cc} as (is) molecula

Compare DD* molecula to deuteron (pn)

Maria Kliakova

Now should probe compact component

Other doubly-heavy states, [bbud]

The T_{cc} below DD* threshold supports predictions for long-lived T_{bb} [bb][ud]

- BR(b \rightarrow D π/μ): (0.1-1%)²
 - \rightarrow expect yields of only ~10⁻² even in 2040

Other doubly-heavy states, [bcud]

T_{bc} [bc][ud] may be below BD threshold by O(10) MeV

 Prospects for searches at pp (LHC/LHCb) : 1-10 events per mode in Run3. real chances to find (if combining several modes)

Six-quark state with b/c quarks

- Hyper-nuclei with $\Lambda(\Sigma/\Lambda\Lambda)$ are explored since 50's
- Long story of searches for stable AA di-baryon (H-[uuddss])... still not found, but not excluded [see refs in backup]

shall adding heavy hadrons give a breakthrough, again?

 Theory calculations on Qqqqq and Qqqqqq states since 1980's, may be loosely (2-10 MeV) bound and long-lived [see refs in backup]

Conclusion

 Exotic Hadron spectroscopy is a most promising way to advance understanding of non-perturbative QCD

- Great progress in last 20 years...
 - ... just discovering another one is no longer enough ...

... now need to focus on specific and simpler systems,

like T_{cc}

LHC (especially LHCb) has great prospects for this

The χ_{c1} (3872) as example

N. Hüsken, E. S. Norella, I. Polyakov

4.2. The $\chi_{c1}(3872)$ (also known as X(3872)) MESON-LIKE/HIDDEN CHARM/ISOSCALAR quantum numbers: $I^{G}(J^{PC}) = 0^{+}(1^{++})$ minimal quark content: $[c\bar{c}]$, more likely $[c\bar{c}(u\bar{u}+d\bar{d})]$ experiments: Belle, CDF, D0, BaBar, LHCb, CMS, ATLAS, BESIII (and potentially E705, COMPASS) **production:** B^+ , B^0 , B^0_s and Λ^0_b decays, prompt pp, $p\bar{p}$, pPb (Pbp) and PbPb collisions, $e^+e^- \rightarrow \gamma \chi_{c1}(3872), \ \omega \chi_{c1}(3872)$ potentially via ψ - or χ_c -like states decay modes: $\pi^{+}\pi^{-}J/\psi$, $\omega J/\psi$, $D^{*0}\bar{D}^{0}$, $\pi^{0}\chi_{c1}(1P)$, $\gamma J/\psi, \gamma \psi(2S)$ nearby threshold: $D^{*0}\bar{D}^0$ width: 1.19 ± 0.21 MeV (in $\pi^+\pi^- J/\psi$ channel)

 $m(\chi_{c1}(3872)) - m(D^0\overline{D}^{*0}) = -0.07 \pm 0.12 \text{ MeV}$ LHCb, JHEP 08 (2020) 123

Ivan Polyakov / IHEP EPD Seminar

Theory models

* see references in Appendix

Theory models (References)

charmonium

Barnes, Godfrey, Swanson, Phys. Rev.
D 69 (2004) 054008 & Phys. Rev. D 72 (2005) 054026;
Eichten, Lane, Quigg, Phys. Rev. D69 (2004) 094019;
Suzuki, Phys. Rev. D72 (2005) 606 114013;

compact tetraquark

Maiani, Piccini, Polosa, Riquer, Phys. Rev. D71 (2005) 014028;
Matheus, Narison, Nielsen, Richard, Phys. Rev. D75 (2007) 014005;

DD* molecula

Braaten, Kusunoki, Phys. Rev. D69
(2004) 074005;
Swanson, Phys. Lett. B588 (2004) 189;
Wong, Phys. Rev. C69 (2004) 055202;
Tornquist, Phys. Lett. B590 (2004) 209;
Hanhart, Kalashnikova, Kudryavtsev, Nefediev, Phys. Rev. D76 (2007) 034007

hadrocharmonium

Dubynskiy, Voloshin, Phys. Lett. B666 (2008) 344;

hybrid

- Close, Godfrey, Phys. Lett. B574 (2003) 210; - Li, Phys. Lett. B 605 (2005) 306;

admixture

- Suzuki, Phys. Rev. D72 (2005) 114013; - Close, Page, Phys. Lett. B578 (2004) 119; - Dong, Faessler, Gutsche, Lyubovitskij, J. Phys. G 38 (2011) 015001;

Wide and narrow states

- Γ<20 MeV peak in 1D fit
 - χ_{c1} (3872) and few other χ_c -like
 - $T_{c\bar{c}(s)}$ states from e^+e^-
 - P_{cc(s)}
 - Υ and $T_{b\overline{b}}$ states
 - D_{s0/1}*
- suppressed decays to J/ψ/Y+hadrons → moleculas?

[Marek Karliner, CERN Courrier Nov 2024]

- Γ = 50-500 MeV often 4D-7D amplitude analysis
 - ψ -like, some χ_c -like, all $\chi_c \rightarrow J/\psi \phi$
 - T_{cc(s)} from b-decays - T_{cccc} - T_{cs/cs}
- lives less than its size/c; can structure at all be discussed?
 - \rightarrow SU(3) symmetries, EFT, ...

Similar moleculas with heavy quark

 Qqqqq and Qqqqqq are candidates for stable compact multiquarks since 1980s Dover, Kahana, 1977 Gignoux, Silvestre-Brac, Richard, 1987 Lipkin, 1987

- Molecula configurations may give ~2-20 MeV binding
 - → long-lived states Yamaguchi et al., 2011 Huang, Ping, Wang, 2014

Hypernuclei studies

Not found yet, but not excluded

Chrien, 1998 Belle, 2013 ALICE, 2015 STAR, 2015 BaBar, 2019

 Is attraction between AA strong enough to make bound state?

 $E_{B}(\Lambda\Lambda) = 3.2 \pm 2.6 \text{ MeV} \text{ ALICE, 2019}$

 $E_{B}(\Lambda\Lambda) < 0$ [Kamiya et al., 2022]

Ivan Polyakov / IHEP EPD Seminar

Experimental feasibility

 ALICE observed hypertriton [pnA] in both PbPb, pPb and pp collisions
 ALICE, 2021

LHCb has observed hypertriton in pp

LHCb-CONF-2023-002

- Higher prospects for hexaquarks (6-quark vs. 9)
- LHCb has searched for long-lived [budud] & [bsudu] in J/ ψ pK π & J/ ψ p ϕ channels $\sigma^*BR(pp \rightarrow P_bX)/\sigma^*BR(pp \rightarrow \Lambda_b) < \sim 2 \times 10^{-3}$ LHCb, 2018 compare to $\sigma(d)/\sigma(p) \sim 1.5 \times 10^{-3}$

Expected Yields

- $\sigma(H_{b/c})/\sigma(\Lambda_{b/c})$ suppression is either
 - σ(d)/σ(p) ~ 1.5x10⁻³
 - or $[\sigma(\Lambda_c)/\sigma(D)]^3 = [0.1-0.3]^3 = (0.1 2.7)\%$ LHCb, 2013 $[\sigma(\Lambda_b)/\sigma(B)]^3 = [0.4]^3 = 6\%$ LHCb, 2012
- Additional 0.01-0.1 suppression from BRs x efficiency
 - → in Run3 expect O(10³-10⁵) signal candidates for H_{c(s)}, O(10¹-10³) for H_{b(s)} O(1-10) for H_{cc}
- High chances for observation / effective exclusion

The two cases of T_{bc}

- Having mass below/above BD threshold means very different signatures
 - δm<0: only weakly decaying, long-lived

• $\delta m > 0$: strongly decaying to $\overline{B}^0 D^0 \& B^- D^+$, short-lived

B

T