Measurements of hadronic interactions between light and charm hadrons with femtoscopy

Fabrizio Grosa CERN GDR-QCD, GDR-InF and Gluodynamics workshop Spectroscopy in decays & in femtoscopic correlations *Orsay, Paris* | 16–17 December 2024

Outline

- Physics motivations for D-meson hadron femtoscopy
 - Study residual strong interaction
 - → Assess role of hadronic phase in heavy-ion collisions
- Measurements of D-meson hadron interactions from ALICE Study residual strong interaction
- Future perspectives
 - charmed nuclei

Interaction between charm baryons and nucleons to investigate the possible existence of

Interaction between two charm hadrons to study nature of recently discovered exotic states

Study hadron interactions: why femtoscopy?

Traditional method to study hadron-hadron interaction: scattering experiments

Experimental challenge in case of **charm hadrons** due to their short lifetime **Femtoscopy** is a verge powerful tool to study hadron interaction at colliders

	S. Navas et al. (PDG), PRD 110 (2024) 03
	Hadron	cτ (μm)
	D0	121
-	D+	312
	D_{s}^{+}	150
	Λ_{c}^{+}	63

Study hadron interactions – theory

+ unitarized chiral perturbation theory for the extrapolation to the physical pion mass

Inelastic interactions might also lead to the formation of dynamical / molecu

I.e. D_0 *(2300) in unitarized chiral perturbation theory, is a two-pole structure dynamically formed by $D\pi$ and $D_s\overline{K}$ interactions

Impact the correlation function measured with femtoscopy

Theory predictions based on lattice QCD calculations for the determination of low energy constants (i.e. scattering length a)

- Example: $D\pi$ interaction via two isospin channels
 - I = 3/2 purely elastic
 - ' = 1/2 inelastic, with several **coupled channels**

Strangeness
$$(0, \frac{1}{2})$$
 $D\pi \rightarrow D\pi$ \uparrow $D\eta \rightarrow D\eta$ \bullet of $D_0^*(2300)$ Isospin $D_s\bar{K} \rightarrow D_s\bar{K}$ \bullet ular states $D_s\bar{K} \rightarrow D\pi$ $\rho_s\bar{K} \rightarrow D\pi$ $D_s\bar{K} \rightarrow D\pi$

E. Liu et al, PRD 87 (2013) 014508

Study hadron interactions – theory

- Depletion around 200 MeV due to quasi-bound state (first pole of D₀*(2300)) compensated by couple channels
- Similar depletion expected in D_sK̄
 correlation function due to the
 second pole

Heavy-ion collisions

- QCD calculations on lattice predict a phase transition from the ordinary nuclear matter to a colour-deconfined medium, called quark-gluon plasma (QGP)
 - created in ultra-relativistic heavy-ion collisions
 - very high energy density $\varepsilon > 15 \text{ GeV/fm}^3$
 - after a pre-equilibrium phase expands hydrodynamically

Charm-light hadron interaction: heavy-ion hadronic phase

• QCD calculations on lattice predict a phase transition from the ordinary nuclear matter to a **colour-deconfined medium**,

Charm quarks: produced in hard scatterings before the formation of the QGP, subsequently interact with the medium constituents

Nuclear modification factor

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN_{\rm AA}/dr}{dN_{\rm pp}/dr}$$

Comparison with models based on charm-quark transport in the QGP to infer properties of the interaction between charm quarks and the medium

Charm-light hadron interaction: heavy-ion hadronic phase

- QCD calculations on lattice predict a phase transition from the ordinary nuclear matter to a **colour-deconfined medium**,
 - Charm quarks: produced in hard scatterings before the formation of the QGP, subsequently interact with the medium constituents After the hadronisation, charm hadrons might still interact with the light
 - → How much **hadronic rescatterings** influence our observables?
 - In the TAMU model the scattering lengths used for πD and $\overline{K}D$ are:
 - → $a_{\pi D}(|=3/2) = -0.10 \text{ fm}$
 - → $a_{\overline{K}D}(I=1) = -0.22 \text{ fm}$
 - → No experimental constraints

Reconstruction of strange and charm hadron decays in ALICE

Time Projection Chamber

- Track reconstruction
- Particle identification via specific energy loss

Time-of-Flight detector

➡ Particle identification via time-of-flight

D^(*)[±] - meson reconstruction with ALICE

Hadron	Decay	E
D*+	$D^0(\rightarrow K^-\pi^+)\pi^+$	
D+	$ ext{K}^-\pi^+\pi^+$	

- High-multiplicity data collected during LHC Run 2 ($L_{int} \approx 6 \text{ pb}^{-1}$)
- Fully reconstructed displaced decay topologies
- **Topological** and particle-identification (PID) selections applied to reduce combinatorial background

Estimation of fraction from beauty-hadron decays

 Multi-class BDT classifier adopted to select D mesons and classify them as:

- ➡ Background
- → **Prompt D mesons** (charm origin)
- → Non-prompt D mesons (beauty decays)

- Template fit of the raw-yield distribution obtained by sampling the BDT score rated to the probability to be non-prompt D meson
 - Provide fraction of D mesons for any given selection applied

Raw correlation function

$$C(\vec{k}^*) = \mathcal{N} \frac{N_{\text{same}}^{\text{D}\pi}(k^*)}{N_{\text{mixed}}^{\text{D}\pi}(k^*)} =$$

• Example: $D^{\pm}\pi^{\mp}$ candidate pairs

→ D[±] candidates selected in invariant-mass region of the signal (residual combinatorial background to be subtracted) → Pion sample selected with PID in TPC and TOF (>99% purity)

Slow rise towards low *k** due to jet-induced momentum correlations (Parton shower)

Flat at unity for large k* (no interaction)

EXALICE, PRD 110 (2024) 032004

Raw correlation function

$$C(\vec{k}^*) = \mathcal{N} \frac{N_{\text{same}}^{\text{D}\pi}(k^*)}{N_{\text{mixed}}^{\text{D}\pi}(k^*)} = \lambda_{\text{SB}} C_{\text{SB}}(k^*) + C_{\text{non-femto}}(k^*) \cdot [\lambda_{\text{genuine}} C_{\text{genuine}}(k^*) + \lambda_{\text{D}^+ \leftarrow \text{D}^*} C_{\text{D}^+ \leftarrow \text{D}^*} + \lambda_{\text{flat}}(k^*)]$$

- Example: $D^{\pm}\pi^{\mp}$ candidate pairs
 - → D[±] candidates selected in invariant-mass region of the signal (residual combinatorial background to be subtracted) → Pion sample selected with PID in TPC and TOF (>99% purity)
 - Slow rise towards low *k** due to jet-induced momentum correlations (Parton shower)
 - Flat at unity for large k* (no interaction)

Correction of raw correlation function

$$C_{\text{raw}}(\vec{k}^*) = \lambda_{\text{SB}}C_{\text{SB}}(k^*) + C_{\text{non-femto}}(k^*) \cdot [\lambda_{\text{genuine}}C_{\text{genuine}}(k^*) + \lambda_{\text{D}^+\leftarrow\text{D}^*}C_{\text{D}^+\leftarrow\text{D}^*} + \lambda_{\text{flat}}]$$

- Raw correlation function includes different sources of backgrounds
 - Combinatorial background 1.

estimated from D-meson sidebands

Correction of raw correlation function

$$C_{\text{raw}}(\vec{k}^*) = \lambda_{\text{SB}} C_{\text{SB}}(k^*) + C_{\text{non-femto}}(k^*) \cdot [\lambda_{\text{genuin}}]$$

$_{\text{ine}}C_{\text{genuine}}(k^*) + \lambda_{D^+ \leftarrow D^*}C_{D^+ \leftarrow D^*} + \lambda_{\text{flat}}]$

- Raw correlation function includes different sources of backgrounds
 - Combinatorial background estimated from D-meson sidebands
 - ii. Jet-induced correlations (non-femto) estimated with PYTHIA 8

17

00000

0000000

Correction of raw correlation function

$$C_{\text{raw}}(\vec{k}^*) = \lambda_{\text{SB}}C_{\text{SB}}(k^*) + C_{\text{non-femto}}(k^*) \cdot [\lambda_{\text{gent}}]$$

$C_{\text{genuine}}(k^*) + \lambda_{D^+ \leftarrow D^*} C_{D^+ \leftarrow D^*} + \lambda_{\text{flat}}$

- Raw correlation function includes different sources of backgrounds
 - Combinatorial background estimated from D-meson sidebands
 - Jet-induced correlations (non-femto) ii. estimated with PYTHIA 8

iii.
$$D^{\star\pm} \rightarrow D^{\pm} + X$$

obtained from $D^{*\pm}\pi^{\mp}$ measurement,

converted to $D^{\pm}\pi^{\mp}$ momentum space with decay kinematics

• Total background well describes CF for large *k**

$D\pi$ interaction

• Both same-sign and opposite sign correlation functions compatible with Coulomb-only hypothesis Strong interaction "weaker" than the one predicted by theoretical predictions

F. Grosa (CERN) fgrosa@cern.ch

•
$$D^{\pm}\pi^{\pm}$$

- \rightarrow *I* = 3/2 channel only
- $D^{\pm}\pi^{\mp}$
 - → I = 3/2 (33%), I = 1/2 (66%)

L. Liu et al, PRD 87 (2013) 014508 **X.-Y. Guo et al, PRD 98 (2018) 014510 B.-L.** Huang et al, PRD 105 (2022) 036016 **Z.-H.** Guo et al EPJC 79 (2019) 13 **J.M.** Torres-Rincon et al, PRD 108 (2023) 096008

ALICE, PRD 110 (2024) 032004

The emitting source for the models

• Model the source considering the core radius corresponding to the average $m_{\rm T}$ and adding resonances

• Fit correlation functions of p-p and $p-\Lambda$ pairs

- Interaction precisely described
- → Gaussian source with radius as free parameter

$D^*\pi$ interaction

- Similar results for the D* $\pm \pi^{\mp}$
 - Expected due to heavy-quark spin symmetry

F. Grosa (CERN) fgrosa@cern.ch

•
$$D^{\star\pm}\pi^{\mp}$$

- \rightarrow *I* = 3/2 channel only
- $D^{\star\pm}\pi^{\pm}$
 - → I = 3/2 (33%), I = 1/2 (66%)

L. Liu et al, Phys. Rev. D87 (2013) 014508 **J.M.** Torres-Rincon et al, PRD 108 (2023) 096008

ALICE, PRD 110 (2024) 032004

Extraction of scattering parameters from data

• Scattering lengths extracted from data via a χ^2 minimisation procedure

Model prediction computed varying the scattering lengths using **Gaussian-potential** approximation (meson exchange)

$$V(r) = V_0 \exp(-m_\rho^2 r^2)$$

Y. Kamyia et al, EPJA 58 (2022) 131

F. Grosa (CERN) fgrosa@cern.ch

Gaussian potential $a_0^{D\pi}(I=3/2) = 0.01 \pm 0.02$ (stat.) ± 0.01 (syst.) fm $a_0^{D\pi}(I=1/2) = 0.02 \pm 0.03 \text{ (stat.)} \pm 0.01 \text{ (syst.) fm}$ 200 150 250 *k** (MeV/*c*)

• Experimental scattering lengths for both isospin channels compatible with zero \Rightarrow >5 σ disagreement with models in I = 1/2EXALICE, PRD 110 (2024) 032004

D^(*)K interaction

• $D^{(\star)\pm}K^{\pm}$

 \rightarrow *I* = 1 channel only

• Experimental data compatible with both Coulomb interaction and Coulomb + strong interaction → Higher precision needed to draw conclusions

L. Liu et al, PRD 87 (2013) 014508 **X.-Y. Guo et al, PRD 98 (2018) 014510 B.-L.** Huang et al, PRD 105 (2022) 036016 **Z.-H.** Guo et al EPJC 79 (2019) 13

ND interaction

- pD-
 - Most of the models predict repulsive interaction
 - Possible bound state formation (Yamaguchi et al)
- Data compatible with Coulomb only interaction, but comparison slightly improved when also attractive strong interaction is considered
 - → Higher precision needed to draw conclusions

Solution J. Haidenbauer et al, Eur. Phys. J. A33 (2007) 107–117 **J. Hofmann and M. Lutz, Nucl. Phys. A 763 (2005) 90–139** Fontura et al, Phys. Rev. C 87 (2013) 025206 See Yamaguchi et al, Phys. Rev. D84 (2011) 014032

ALICE, PRD 106 (2022) 052010

ALICE in Run3

• The ALICE detector was substantially upgraded during the Long Shutdown 2 → New silicon inner tracker (7 layers of monolithic active pixel sensors)

Run 2 detector

F. Grosa (CERN) fgrosa@cern.ch

ALICE in Run3

• Dedicated **software triggers** for specific measurements

- \rightarrow Including a trigger on events with a Λ_c^+ -baryon candidate and a proton candidate having small *k**
- Performance plots from the quality control of the software triggers for a partial dataset of 2022 data

Exotic nuclei

- **Hypernuclei**: bound states of strange baryons (hyperons) and ordinary nucleons
 - Several observations starting from 1950s
 - → Extend the nuclear chart to a third dimension, the strangeness one
 - What about **charm**?

Charm hypernuclear spectrum already computed in 1977

E. B. Dover et al, PRL 39 (1997) 1506

Charm-baryon – nucleon interaction

- The lightest possible charmed hypernucleus (c-deuteron) and a nucleus is attractive
- Lattice QCD calculations (HAL QCD) available at unphysical quark masses
 - Extrapolated to physical quark masses with unitarized chiral perturbation theory

S. Haidenbauer et al, EPJA (2018) 54: 199

• The lightest possible charmed hypernucleus (c-deuteron) can exist only if the strong interaction between a charm-baryon

l quark masses chiral perturbation theory

• Expected **attractive interaction** both in ¹S₀ and ³S₁ partial waves

Charm-baryon – nucleon expected correlation function

Solution J. Haidenbauer et al, EPJA (2020) 56:184

- Quantitatively different predictions from different models
 - → LQCD-e (same as slide 25)
 - *Solution* J. Haidenbauer et al, EPJA (2018) 54: 199
 - → CQM: interaction derived within the constituentquark model H. Garcilazo et al, EPJC 79 (2019) 598
 - CTNN-d and Model A: extension of the mesonexchange hyperon-nucleon potential
 - Formation of bound states with binding energies of the order of that of the deuteron (CTNN-d) in both S-waves

I. Vidana et al, PRC 99 (2019) 045208 S. Maeda et al, PTEP 2016 (2016) 023D02

ALICE 3

Proposed upgrade for LHC Run 5 and 6

- Original proposal
 - Large acceptance ($|\eta| < 4$)
 - All silicon tracker with $\sigma_p/p \approx 1~\%$
 - First tracking layer at 5 mm from primary vertex
 - → ~10% X_0 overall material budget (0.1% X_0 for the first layer)
 - Impact parameter resolution 10 μ m for tracks with p = 200 MeV/c
 - Excellent hadron and lepton PID
 - Silicon-based TOF and RICH
 - Muon chambers with absorber
 - → x5 more AA luminosity than Run 3&4
- Possible descoping under discussion

Study exotic stares with femtoscopy

Charn				
System	 (J P(C))	Candidate		
np	0 (1+)	deuteron		
ND	0 (1/2-)	Λ _c (2765)		С
ND*	0 (3/2-)	∧ _c (2940)		d
ND	0 (1/2-)	Σ _c (2800)		
$D^*\overline{D}$	0 (1++)	X(3872)		
D*D	0(1+)	T _{cc}		$\widehat{\mathbb{R}}$ 70
$D_1\overline{D}$	0 (1)	Y(4260)		0 keV/e
$D_1\overline{D}^*$	0 (1)	Y(4360)		0 <u>2</u>)/p
ΣD	1/2 (1/2-)	P _c (4312)		
ΣD̄*	1/2 (1/2-)	P _c (4457)		
ΣD̄*	1/2 (3/2-)	P _c (4440)	_	
Fang-Zhen	g Peng et al, Phys. Rev	v. D 105, 034028 (202	22)	

3.87

F. Grosa (CERN) fgrosa@cern.ch

- Just below DD* threshold
 - ideal candidate to be a molecular state

System-size dependence of CF in case of bound-state formation

F. Grosa (CERN) fgrosa@cern.ch

ALICE 3: a laboratory for systematic searches of charm bound states

- ALICE 3: large acceptance, high luminosity, excellent spatial resolution
 - → Run 5: ideal laboratory for the measurement of charm-hadron momentum correlations in different colliding systems
- Interplay between system size and scattering length size-dependent modification of the correlation function in presence of a bound state Se Yuki Kamyia et al, arXiv:2203.13814

Summary and outlook

- 1. First measurements of femtoscopy with charm mesons performed with ALICE using data collected in Run 2
 - → Typically "weaker" strong interaction measured compared to theoretical predictions
- 2. **Expected significant improvements** thanks to the ALICE upgrades installed for **Run 3** (improved pointing resolution and readout capabilities)
 - Measure interactions between charm baryons and nucleons
- **Proposed** wide acceptance, ultralight silicon-based 3. experiment for **Run 5 (ALICE 3)**
 - Measure interactions between pairs of charm hadrons to investigate nature of exotic states

4×10⁻¹ 3×10⁻¹ 2×10⁻

C_{D⁰D*}

ADDITIONAL SLIDES

The emitting source

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3r^*$$

Emitting source: hypersurface at kinematic freezout of final-state particles

Described with a Gaussian core

$$G(r*,r_{core}(m_{T})) = \frac{1}{(4\pi r_{core}^{2}(m_{T}))^{3/2}} \cdot \exp\left(-\frac{1}{4\pi r_{core}^{2}(m_{T})}\right)^{3/2}$$

The emitting source

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^* \qquad G(\vec{r}^*)$$

Emitting source: hypersurface at kinematic freezout of final-state particles

Described with a Gaussian core

$$G(r*,r_{\rm core}(m_{\rm T})) = \frac{1}{(4\pi r_{\rm core}^2(m_{\rm T}))^{3/2}} \cdot \exp\left(-\frac{r^{*2}}{4r_{\rm core}^2(m_{\rm T})}\right)$$

Short-lived strongly decaying resonances effectively enlarge it

$$E(r*, M_{\text{res}}, \tau_{\text{res}}, p_{\text{res}}) = \frac{1}{s} \exp\left(-\frac{r*}{s}\right) \text{ with}$$

$$s = \beta \gamma \tau_{\rm res} = \frac{p_{\rm res}}{M_{\rm res}} \tau_{\rm res}$$

Calibrating the source

• Fit correlation functions of p-p and $p-\Lambda$ pairs

- Interaction precisely described
- → Gaussian source with radius as free parameter

Femtoscopy with small emitting sources

• Typical range of nuclear potential around 1-2 fm study of strong interaction among hadrons not possible with larger sources

- proton–proton and proton–nucleus collisions are the ideal laboratory to study the strong interaction

Emitting source with and without resonances

Calibration of the emitting source

See Phys. Lett. B 811 (2020) 135849

• Measurement of source radius obtained from p–p correlation used to obtain the values for other baryon species

Femtoscopy for the study of hadronic interactions

Femtoscopy technique: based on the *correlation function (CF)*

$$C(\vec{k}^*) = \mathcal{N} \frac{N_{\text{same}}^{\text{pairs}}(k^*)}{N_{\text{mixed}}^{\text{pairs}}(k^*)} =$$

$$\int S(\vec{r}^*) |\psi(\vec{k}^*,\vec{r}^*)|^2 d^2$$

Theory

Koonin-Pratt equation M.Lisa, S. Pratt et al, Ann.Rev.Nucl.Part.Sci. 55 (2005) 357–402

where
$$\vec{k}^{*} = \frac{\vec{p}_{a}^{*} - \vec{p}_{b}^{*}}{2}$$

is in the rest frame of the particle pair

Relative wave function sensitive to interaction potential

Emitting source: hypersurface at kinematic freeze out of finalstate particles

 \rightarrow CF sensitive to strong interaction when the source size ~1 fm

F. Grosa (CERN) fgrosa@cern.ch

CF computed in ALICE using *CATS* (Correlation Analysis Tool using the Schrödinger equation)

- Developed at Technische Universität Münc
- Provides exact solution of Schrödinger equation for wave function

D. L. Mihaylov et al, Eur. Phys. Journal C 78 (2018) 394

С	h	61	n	

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^*$$

Relative wave function sensitive to interaction potential

(r) (1/fm) S 22 4 ਸ

F. Grosa (CERN) fgrosa@cern.ch

Absence of interaction $C(k^*) = 1$

E. Fabbietti, V. Mantovani Sarti, O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377–402

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^*$$

Relative wave function sensitive to interaction potential

(r) (1/fm) S ~__ 4 ਸ

L. Fabbietti, V. Mantovani Sarti, O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377–402

F. Grosa (CERN) fgrosa@cern.ch

- Absence of interaction $C(k^*) = 1$
- Attractive potential $C(k^*) > 1$

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^*$$

Relative wave function sensitive to interaction potential

(r) (1/fm) S <u>ک</u> 4 7

L. Fabbietti, V. Mantovani Sarti, O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377–402

F. Grosa (CERN) fgrosa@cern.ch

- Absence of interaction $C(k^*) = 1$
- Attractive potential $C(k^*) > 1$
- → Repulsive potential $C(k^*) < 1$

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^*$$

Relative wave function sensitive to interaction potential

(r) (1/fm) S ~___ 4 7

F. Grosa (CERN) fgrosa@cern.ch

- Absence of interaction $C(k^*) = 1$
- Attractive potential $C(k^*) > 1$
- → Repulsive potential $C(k^*) < 1$
- → Bound-state formation $C(k^*) <> 1$

L. Fabbietti, V. Mantovani Sarti, O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377–402

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^*$$

Relative wave function sensitive to interaction potential

(r) (1/fm) S ~___ 4 7

F. Grosa (CERN) fgrosa@cern.ch

- Absence of interaction $C(k^*) = 1$
- Attractive potential $C(k^*) > 1$
- → Repulsive potential $C(k^*) < 1$
- → Bound-state formation $C(k^*) <> 1$

L. Fabbietti, V. Mantovani Sarti, O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377–402

