

General Program Fr target list status

Andrea Goldwurm & Alexis Coleiro on behalf of the SVOM GP French Working Groups

• Nov 22: General call for participation to GPWG to SVOM science • Goal: define a list of sources (scientifically driven) for the 1st year SVOM observation plan related to the main science cases (**GP** + nominal ToO):

	AC
	AGN CL
Extragalactic	
Galactic	
	XF
	X
	SNR
	(
	Magne
	Magne Peculi
	Sup / Sala
	Sun / Sola
Misc.	
	Gal. Ric

GP Working Groups

Blazars	A. Coleiro (APC)	
GN QSO / Sey	F. Marin (ObsAS)	
LQ / Time variability	M. Dennefeld (IAP)	
ULX	O. Godet (IRAP)	
TDE	R. Starling (Leicester)	
ccSNe	M. Renaud (LUPM)	
FRB		
XRB - BH	F. Cangemi (APC)	
(RB - NS - HM	G. Vasilopoulos (ObsAS)	
XRB - NS -LM	S. Guillot (IRAP)	
R / PWN / Pulsars	P. Maggi (ObsAS)	
CV / Novae	M. Clavel (IPAG)	
netars / AXP / SGR	D. Götz (AIM)	
ıliar / Flaring Stars		
ar System / Exoplanets		
TGF		
СХВ	L. Bouchet (IRAP)	
idge X-ray Emission		
2		

• Working groups were asked to provide:

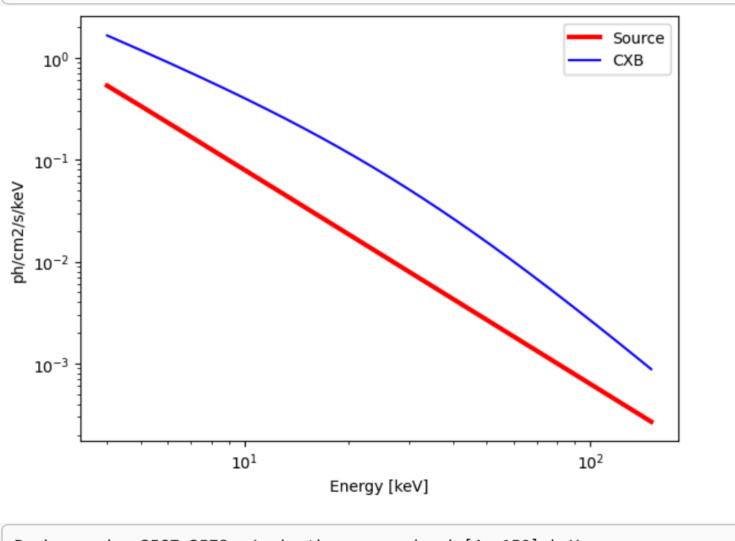
- list of sources
- scientific justification
- immediate objectives to fulfill
- requested exposure time
- observing strategy
- trigger criteria (for ToO)
- synergies with other facilities

• Main inputs:

- Swift/XRT & BAT, RXTE, MAXI/GSC source catalogues
- Tuebingen X-ray binary catalog (<u>http://astro.uni-tuebingen.de/~xrbcat/</u>)
- ASI SED Builder tool (<u>https://tools.ssdc.asi.it/SED/</u>)
- ASI Open Universe (Swift DeepSky) <u>https://openuniverse.asi.it</u>
- Literature
- Multi-messenger correlations

GP Working Groups

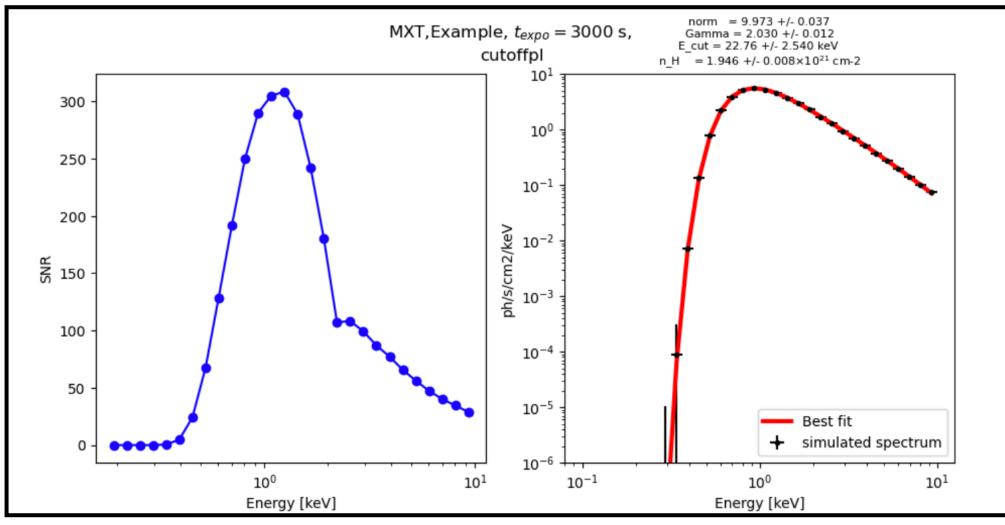
- Available at: https://fcangemi.github.io/gp-tools-svom/intro.html
- Preliminary exposure time calculators for MXT & ECLAIRs (based on current response matrices)
- Handle different spectral models: power law, broken power law, cutoff power law, blackbody
- Rough spectral simulation (works for PL, cutoff PL and bbody)


GP Tools

Powerlaw (example for the Crab)

```
# Model and parameters
model = "powerlaw"
                   # Flux normalisation in ph/cm2/s/keV
     = 10
                   # Photon index
Gamma = 2.1
                   # Density column in 1e21 cm-2
n H = 4.5
# Exposure time
calculate exposure(SNR = 10, instrument = "ECLAIRs", Eband = [4, 150])
```

= 4 keV Emin = 150 keV 10.0000 ph/s/cm2/keV = Gamma = 2.1 $n_H = 4.5 \text{ e21 cm} - 2$


Background = 3587.2578 c/s in the energy band [4, 150] keV. Source = 523.9236 c/s in the energy band [4, 150] keV. ECLAIRs : need an exposure time of 1.78 seconds for a SNR = 10 over the energy band

- Available at: https://fcangemi.github.io/gp-tools-svom/intro.html
- Preliminary exposure time calculators for MXT & ECLAIRs (based on current response matrices)
- Handle different spectral models: power law, broken power law, cutoff power law, blackbody
- Rough spectral simulation (works for PL, cutoff PL and bbody)

GP Tools

```
instrument = "MXT"
nbins = 32
tps\_expo = 3000
# Optionnal parameters
title = "Example"
path_to_fig = " "
vlim1 = "
ylim2 = [1e-6, 10]
color = "blue"
# Run make_spectra
make_spectra(instrument, nbins, tps_expo, title, path_to_fig, ylim1
```

```
= 10.0000 ph/s/cm2/keV
norm
Gamma = 2.1
E_cut = 40
n_H = 2 e^{21} cm^{-2}
[[Model]]
   Model(_eval)
[[Fit Statistics]]
    # fitting method
                      = leastsq
    # function evals
                      = 70
    # data points
                       = 28
    # variables
                       = 4
    chi-square
                       = 32.8502047
    reduced chi-square = 1.36875853
    Akaike info crit = 12.4730970
    Bayesian info crit = 17.8019151
    R-squared
                      = 0.65331278
[[Variables]]
           9.97363429 +/- 0.03783086 (0.38%) (init = 1)
    norm:
    Gamma: 2.03044528 +/- 0.01281399 (0.63%) (init = 1.7)
    E_cut: 22.7653706 +/- 2.54070426 (11.16%) (init = 70)
   n_H: 1.94643304 +/- 0.00811948 (0.42%) (init = 20)
[[Correlations]] (unreported correlations are < 0.100)</pre>
   C(Gamma, E_cut) = 0.944
   C(Gamma, n_H) = 0.829
   C(norm, E_cut) = -0.699
   C(E cut, n H) = 0.692
   C(norm, Gamma) = -0.475
```

5

• Subclass of AGNs showing large flux variations as well as changes in spectral features (broad Balmer lines / Sey 2 \leftrightarrow Sey 1) over ~months.

• **Possible explanations:**

- Variation of the accretion rate
- Obscuration change (due to moving clumps) 0
- Other structural changes ? 0

• Multi- λ observations needed to constrain models:

- If central engine is involved: expect a delay between luminosity variation and BLR changes
- If obscuration variations: X-ray obs. should reveal 0 a change in the N_{H} .

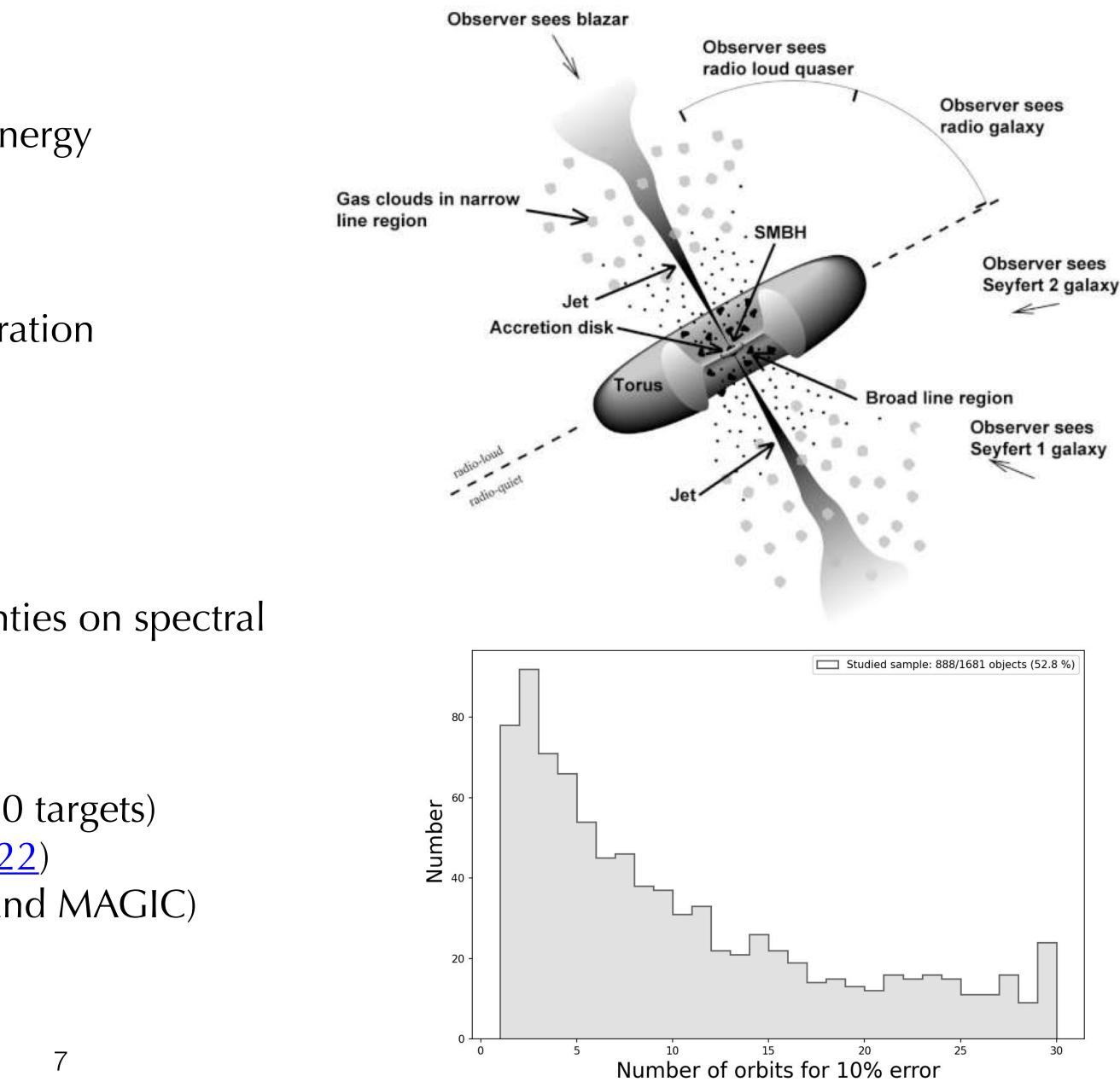

Changing Look AGNs

• **Proposal:** SVOM (X-ray and optical) monitoring of a sample of confirmed Changing Look Quasars to constrain the physical processes at play.

Obs. strategy:

- Trigger **ToO** (~30 ksec) when a significant optical 0 magnitude change is detected (e.g. GAIA).
- For targets with no previous X-ray observation, **GP** observation (205 ksec) for reference.
- Weekly monitoring of G22css

• Open questions:


- Particle acceleration mechanism, origin of the high-energy component (leptonic vs hadronic)
- Emission of high-energy neutrinos ?
- SED modeling \Rightarrow multi-wavelength monitoring. Collaboration with other facilities (e.g. HESS & MAGIC)

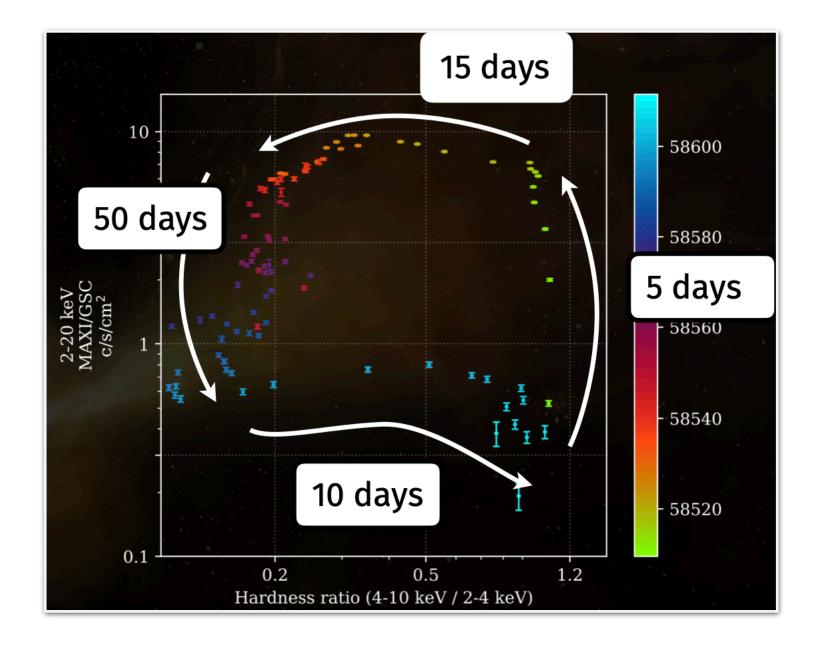
• Estimate observing time with MXT to get <10% uncertainties on spectral parameters (needed to accurate SED fitting)

• List of sources:

- Blazars (AGNs) in neutrino alert error boxes (~40 targets)
- Extreme blazars (<u>https://arxiv.org/abs/2001.09222</u>)
- Blazars detected at VHE (synergies with HESS and MAGIC)

Blazars

- Persistent vs transient sources
- **GP** list (persistent sources):
 - Cyg X-3Cyg X-1


 - GRS 1915+105

- **ToO list (transient sources):**
 - List of 73 microquasars (19) BH and 54 BH candidates)

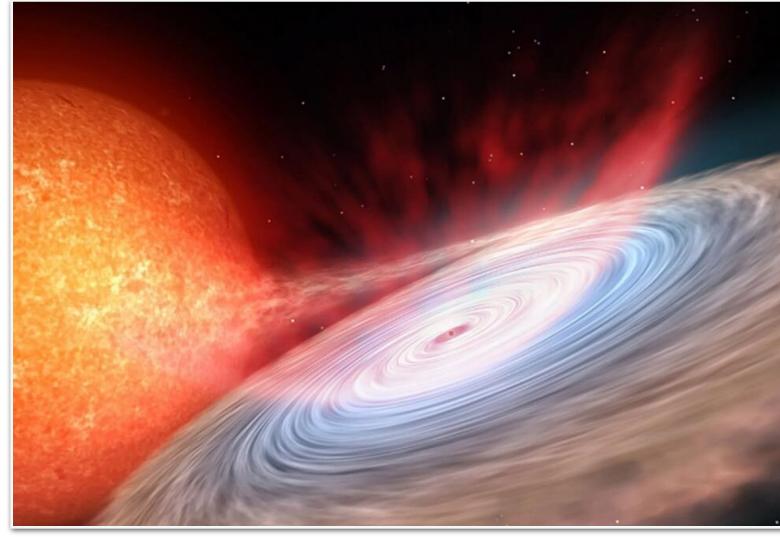
25 ToO requested (total of 75 ks) in the MXT and/or ECLAIRs band

Regular monitoring to improve our understanding of accretion-ejection processes. \Rightarrow 100 ks each (~30 orbits) evenly distributed over the period of visibility of the source: 1 orbit/week = good compromise based on the source variability.

Trigger criteria: flux higher than **50 mCrabs**

• Low Mass X-ray binaries with a neutron star compact companion Search and monitoring of X-ray outbursts of LMXBs.

 \Rightarrow Regular monitoring to improve the understanding of accretion/ejection processes.


Observing strategy:

- 1) Twice-per-month observation of NS-LMXB requiring < 0.5 ksec to reach S/N=10
- 2) Monthly observation of NS-LMXB requiring between 0.5 and 1.5 ksec to reach S/N=10

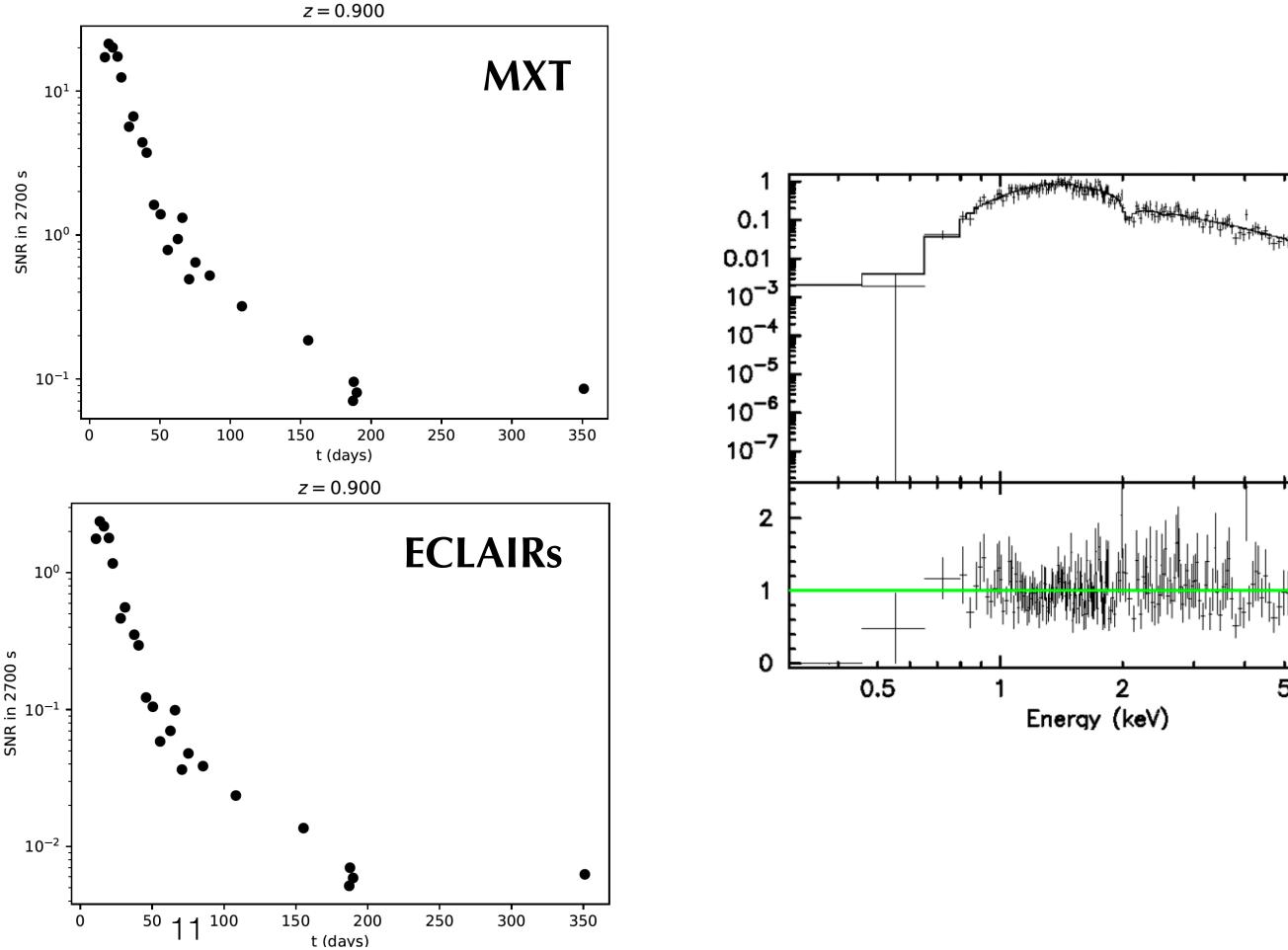
Requested exposure time driven by ECLAIRs:

- Interest of the full 4-150 keV band
- ECLAIRs wide field of view will observe "for free" other sources in the FOV

Low Mass X-ray binaries (LMXBs)

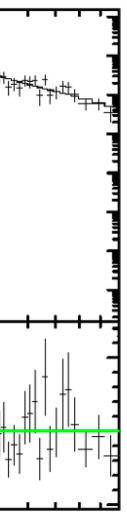
• Small exposure times with MXT could allow pointing at more sources, but would require a lot of overheads (slew)

Active Galactic Nuclei (AGNs)


- Mostly Seyfert galaxies from Swift/BAT catalogue (+ INTEGRAL)
- AGNs observations above 10 keV essential:
 - study non-thermal processes
 - observes sources strongly affected by absorption in the soft X-ray band
 - information on spectral features (high energy cut-off and reflection fraction)
- \Rightarrow provide insight into physical properties of the region around the central BH
- Multi-wavelength (MXT + VT) monitoring:
 - \Rightarrow put stronger constraints on spectral parameters.
- **Proposal:** monitoring of 66 targets every week in B1 (~4 pointings on average)

• Search for Tidal Disruption Events (TDEs):

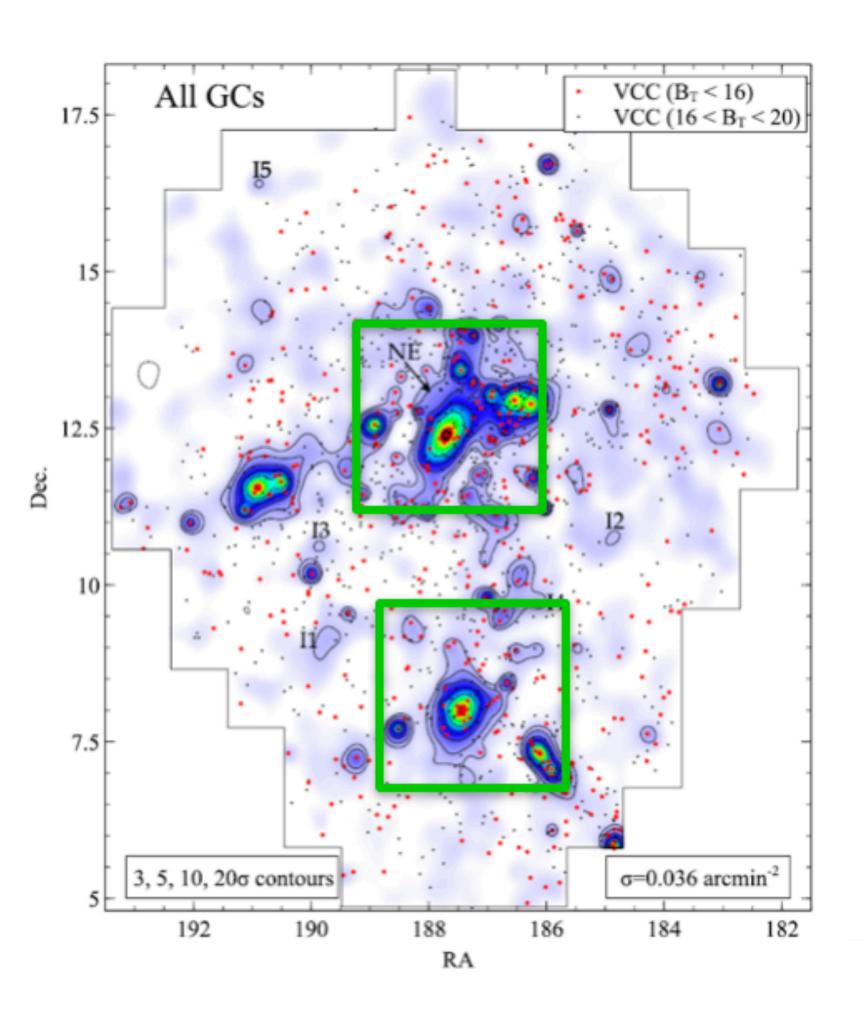
- Tidal disruption of matter on close approach to a black hole resulting in a range of transient behaviour to be understood.
- Goal: probe short and long-term spectral and temporal variability, obtaining a SNR > 10 and good parameter constraints.
- MXT exposure time: ~3 ksec to detect the source up to ~3 weeks after peak.


Survey of Virgo cluster

Example of Swift J2058 (jetted TDE):

Simulation of the SNR vs time for MXT and ECLAIRs

Example of Swift J1644 (jetted TDE):


Simulation of MXT spectrum for 1 orbit at 2 days:

 \Rightarrow In B1: 54 ksec x 5 repetitions = 270 ksec Outside B1: 54 ksec x (52-5)/3 = 329 ksec

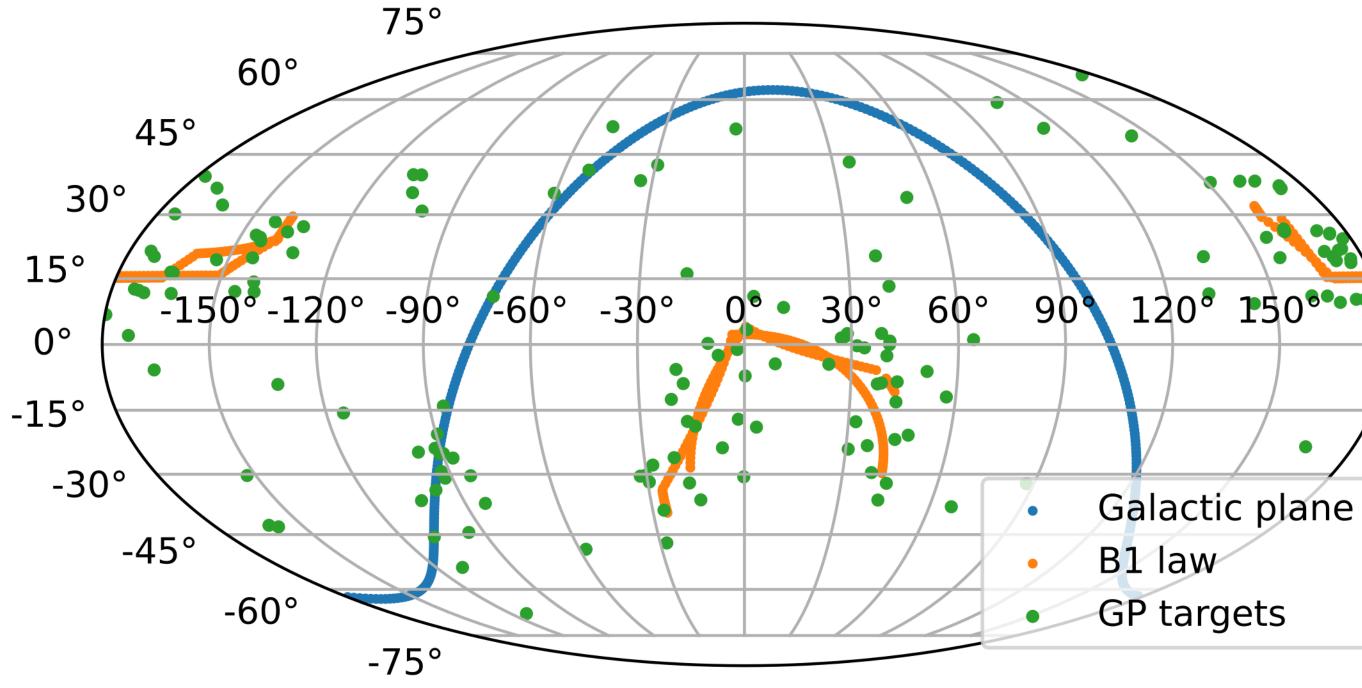
With such a strategy, 50% of the TDEs should be detected within 5 days from the peak (90% within ~8 days).

• (3deg x 3deg) tilling centered on M87 and M49 (high density of galaxies and globular clusters)

• Assuming 3ksec exposure time per tile \Rightarrow 2 regions x 9 tiles x 3 ksec = 54 ksec per observation.

• M87 and M49 compatible with B1 34 and 24 days / year respectively

• 1 observation every week in the B1 and every 3 weeks outside:

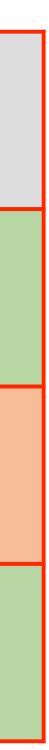

Exact strategy TBC to minimize the requested observing time

- Current number of sources = 159:
 - **3 microquasars** (outside B1 law)
 - 7 CLQ (4 compatible with B1 law)
 - **20 LMXBs/NS** (outside B1)
 - 129 AGNs and blazars (including) 66 AGNs from Swift/BAT catalogue and 58 sources either correlated with neutrinos or detected at VHE or of particular interest for accretion/ejection studies)

Synergies with MAGIC Cherenkov telescopes

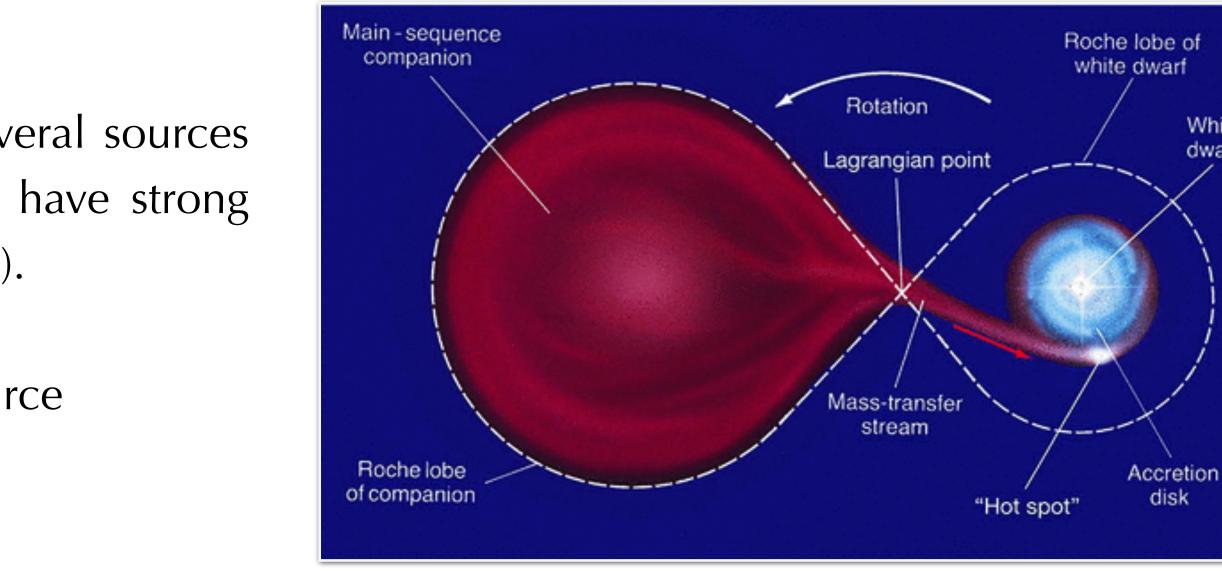
• Joint monitoring with MAGIC for the following sources:

Source name	Monitoring Cadence with SVOM	
Mrk 421	Weekly joint monitoring during common visibility period	
M87		
PG 1553+113		
1ES 2344+514		
Mrk 501		
1ES 1959+650		
PKS 1510-089		
1ES 0229+200		
3C 279		
OJ 287		
BL Lac		
3C 66A	SVOM monitoring \rightarrow MAGIC ToO if X-ray flare	
PKS 1222+216		
3C 264		
TON 116		
OP 313		
Cyg X-1	Weekly monitoring with SVOM	
Cyg X-3		


- Observing strategy:
 - Microquasars: weekly monitoring during visibility period (not in B1)
 - AGN/CLQ: Single pointing for 6 targets (no X-ray flux available). For G22css: daily monitoring in B1 and weekly monitoring outside (evaluate the amplitude of short-term fluctuations).
 - LMXBs: twice per month or monthly monitoring (outside B1)
 - Blazars and VHE AGNs: One pointing or regular (from day to month) monitoring (synergy with HESS, MAGIC, ...)
 - AGNs from Swift/BAT catalog: weekly monitoring during B1

	Requested time (ksec)	Available Fr time (ksec)	Difference (ksec)
Total time within B1 (in ksec)	3663	4513.5	850.5
Total time outside B1 (in ksec)	1336	796.5	-539.5
Total time (in ksec)	4998	5310	312

- Priority (A+ / A / B / FIT) attributed to each source
- Does not include yet survey of Virgo cluster nor CVs and unclassified sources \Rightarrow will increase the requested time.
- Available time = total available time (not effective time taking into account the fraction of time dedicated to GP) 16



• Multi-wavelength observation of CVs:

- On the very high accretion rates measured in several sources correspond to a general property of CVs (could have strong implications on accretion process in these sources).
- **Observing strategy:** one observation of 20-30 ks / source
- Focus on closeby (<500 pc) objects: 31 sources.
- Unclassified Fermi and INTEGRAL sources:
 - 9 Fermi sources (priority A) + 10 INTEGRAL sources (priority B)
 - Assuming power law spectrum (E^{-2} and flux density = 10^{-12} erg/s/cm²)
 - MXT exposure time = 50 ksec (SNR = 5)
 - I pointing per source
- Ultra Luminous X-ray sources
 - $L > L_{Edd}$ for neutron star or stellar black hole
 - Observing strategy TBC

Additional targets to be included

- Include survey of Virgo cluster (pointing strategy TBC) + CVs + ULXs + unclassified Fermi sources.
- Planning implementation for survey mode sources to be checked
- Decision to be taken regarding overlapping sources between Fr and Ch catalogues
- List of sources for nominal ToOs to be finalized
- Final GP catalog will be provided during the commissioning (yearly planning to be updated before beginning of October).

