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Introduction

The properties of elementary particles are associated to the underlying symmetry groups,
what are the symmetries compatible with quantum mechanics and special relativity ?

‘ 1967 - Coleman-Mandula: Lie algebra selectron : spin 0
with bosonic generators \

g =is0(1,3) X g.

‘ 19@-- Haag-Lopuszanski-Sohnius : Lie \

superalgebra with Dbosonic and

fermionic generators electron : spin 1/2




Poincaré superalgebra

Casimir operators for the Poincaré algebra: C, = P, P" Co = W, WH

\

W, = ZeuwapP* M*P

N=1 means we introduce one Majorana spinor - 7 more relations to investigate :

JPoINCARE — :{M#W P,leuv vV = 07 coet 3}1@ ({Qa: o = 1: 2} D {Qa OZ — 17 2})

gD:i5ﬂ(1:3) g1
[PN,PV] =) [Muqua] — O_uuaﬁQﬁ -th -t -t’ I .
Ry means that particles in
[M;w, Poz] — 771/04P,u . nMaPI/ [MMW Qa] — O-W/ ,BQB . p )
. b 56l — g a given supermultiplet
[M“”,Maﬂ] = P Mo# — B Mo P> Qa] = [ W @ ] B share the same mass
L nvaMpﬂ _ nuaMVB {Qon Qa} = _QwﬂadPN

{Qa @} = {Qa, @3} =0



Poincaré superalgebra

In the massless case, multiplets are labelled as : [p", \)

Matter
supermultiplets:

4 Quark

Lepton

Higgsino

o

Squark )

Slepton

Hiqqs
gg Yy,

A=1/2

A=0

H_/
contains states
Gauge
supermultiplets:
4 Photon Photino\
W, Z Wino, Zino
Gluons Gluinos
N /
A=1 A=1/2

N=1supergravity

multiplet:
[ Graviton Gravitino J
A=2 A=3/2

We now deal with supermultiplets containing particles of different spins'!



superspace

Superspace is an extension of ordinary spacetime by fermionic coordinates (06 =—60)

(.6, 0,) > X(2,6,0) = P x 0"t
| )
% Qo = —i (On +i0",;6%0,)
o |7 G = i (s + i0°0",0),)

In superspace, the component fields of a supermultiplets are united into a superfield :

6®(x,0,0) = i(eQ + Qe)D(x, 0,0) >
/ shift the problem of finding
representations

_ _ D, = (éa — w%ﬂmau)
D, _

infinitesimal parameter 5



Superfields

complex scalar R-Weyl spinor complex vector L-Weyl spinor

| | | |
O(x,0,0) = f(x) +V20C(x) +V20x(x) + 00m(z) + 00n(z) + 0o Ov, () + 000X (x) + 600¢(x) + %Qﬁéﬁ_d(:c)

Chirality Reality
Do®'(x,6,0) =0 Dy®(z,6,0) = 0 ®(z,0,0) = ®'(x,0,0)
S -
O(y,0) = ¢(y) + V200 (y) — 00F (y) Viv_z(2,0.0) = 00" 0v,(x) + 000\ (x)

__ 1
~ i660) (<) + 50900 D(x)

Chiral superfield <> matter supermultiplet | Vector superfield <> gauge supermultiplet
6

Y = at —ifatl



Lagrangian formalism

How to describe interactions between chiral and vector superfields ?

Consider a gauge group G and chiral superfields in a representation R generated by the
hermitian matrices T:

- transformation of the chiral superfield : @' = ¢ 7«

Lo=0l0| _+W(@) +W (o)

. T .29V * ]
0060 > Lo=2le ¢‘99§§+W(¢)‘99 W )|

60 00

holomorphic function of chiral only

-] 1 o
The superpotential can take various forms: W(®) = ;9" + —m;; ®'P’ + —)\ijkCI)ZCIﬂCI)’“
- 2 6

mass dimension = 3 7



Lagrangian formalism

For the vector part, the problem arises when we go to non-abelian gauge ( [7..7] = if,T. ):

W, =~ 7DD Do s =~ DDe 7 Do

The most general renormalizable Lagrangian is then :

L=0 V| _ o W * (@t
¢ 0660 i 16¢%7 tr (W5WWa) 00 i 16g%1r CE (TS e o A7 ((I))‘ee +W* (@ )’9‘0_

AN

tr {TaTb} = T’Réab

- application of abelian : SQED

- application of non-abelian : SQCD



SUSY breakin

Ly o F(yanh N D \egi - We can  hide  these
L= —qte Fwtyg ()‘ o' DA = Dy Mo A‘J t 5l contributions into the scalar
+ Dot D' — % (D#wéﬂw _ d)&pr) L PR potential :

— gD O 0 + iV 29\ T — iV2gdTT b X"
— iy (S 4 S0 ) = DA (GG + i) + he

Fl = FBV — ig [vu, v DyA = 0\ —ig [vy, A]

V(p,o') = FTF + %DZ

SUSY breaking is required by phenomenology : no scalar electron discovered !

- spontaneously broken if the scalar potential admits a non-vanishing vev

F-term breaking D-term breaking

[ O'Raifeartaigh mechanism 1 [Fayet-lliopoulos mechanism}
9



SUSY breakin

Do we have a solution ? Yes, but at the cost of harder computations

singlet fields for the

SM gauge group

Hidden sector
[ what we know

Observable sector]
We need :

7

- non-renormalization

- identify superfields for
N=1 supergravity

9
Ly
&
S Soft-breaking terms - curved geometry
log divergence

v

; COMPUTATIONS
Susy breaking

happening at a given

scale
10




MSSM : Hiqqs sector

We supersymmetrize the SM with fields that differ in spin by half. The tool box is :

Matter sector Higgs sector _

0 W = _yeIJLIHlEJ

! ! _(H: _ (Hy _
Q L el — (Hl) Hy = (Hg) + yuIJQIHQUJ

7l ] il \7/ ~ . _
v D £ N q, - HY\ 5 _ (HY — yars Q' H D’
Hy 2 2 Iy ATJ

Gauge sector + + Ynrg L Ho N

VP Ve Vs T
a1 +mpsN'N’

SU(3)c x SU(2), x U(l)y .



MSSM : Hiqqs sector

500
. . . = Mp
The Higgs sector is far richer : 450 —
0 0 400 - My
- scalar: h°, H
350 -
- pseudo-scalar : G°, A° % 300-
- charged : G*, H* £ 250
200 A
G are the Goldstone bosons generated by the ~ **° Mo = 5 (Vb M2 — LT M A2
. 100 A
breaking and are eaten by the gauge bosons o
P 200 a0 &0 80 1000
Mo [GeV]

Higgs masses as a function of My

Superpotential + soft-breaking for tan(B)=3 (tree level)

possible to compute all the mass
matrices for the MSSM

12



Conclusion

How to pursue the study ?

. . 4 A
- local version : supergravity H
- N>1 supersymmetry o T
H ,,>\f
. . . - )=
Even if there are no experimental evidence (yet) : .~_7
e - AN /
- still investigated
- any deviation from the SM would be a sign a N\

of new physics

Thanks to M. Rausch and M. Bonnefoy for having
endured my 5-hour long presentation at the lab !
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A) Coleman-Mandula

Let G be a symmetry group of the S-matrix, and let the following conditions hold :
a) G contains a subgroup locally isomorphic to the Poincaré group P

b) All particle types correspond to positive-energy representations of P. For any
finite M, there are only a finite number of particle types with mass less than M

c) Elastic-scattering amplitudes are analytic functions of center-of-mass energy, s,
and invariant momentum transfer, t, in some neighborhood of the physical region,
except at normal thresholds

d) The generators of G, considered as integral operators in momentum space, have
distributions for their kernels.

15



A) Conventions

MAJORANA spinors (denoted y7) are a peculiar kind of four-component spinors that can be obtained
from the DIRAC one by imposing a constraint :

()%

Writing the expression of the DIRAC spinor allow us to find another way to define it :
Aa Aa
w=(3) == (3) 215)

and another formula comes from the charge conjugation matrix :

€ 0 - )

We thus see that MAJORANA fermions are similar to WEYL fermions as they also have two compo-
nents, but they must satisfy a reality condition and they must be invariant under charge conjugation.

16



A) Conventions

(GRASSMANN variables provide a powerful and elegant framework for dealing with fermionic degrees
of freedom. In our study, they are in fact the new coordinates that we need in order to describe
supersymmetry in the superspace we will build later. Because we deal with fermionic fields that
anticommute, the first definition we can take for these variables is :

€i€j = —€j€i, i,j=1,...,n (2.17)

where ¢; are GRASSMANN elements that anticommute. In particular, we directly see that 7 = 0,
and we can take these variables to have a commutative product law with any ordinary number.
This concept can be extended to that of an anticommuting variable #, so let’s consider conjugate
anticommuting variables @, § with the following properties :

00— —60. 0*—62=0, 6H—0 (2.18)

If one considers a generic analytic function in € developped as a power series, the fact that 6 squares
to zero cancels all the terms except for two :

f(8) =ffn9“2f0+f19+f292+---:fu+f1€ (2.19)

n=>0

17



B) Lie superalgebra

Basic idea: consider a Lagrangian with bosonic and fermionic fields, and symmetries
generated by bosonic or fermionic charges

oL oL e oL i)
BAL (8" 0u8" 0u) = 504" + 3 wzw 576,577 A ") + g, ey 940t
or oL oL oL
T L B
~ o 1Y F gV [ 8607 7 86 *”] then  find  the
oL oL
i, { 50, )] 5ad® — [W] St > conserved current
~~ - and then charge
oL oL .
=7 o 75 ' =0
e+ s )
[BAvBB] — fABCBC' [BAPFI] — 7nAIJJrJ {‘Fla‘FJ} — 5y ABA

18



C) Poincareé superal

boson

|m, Jo 'P“z_'.i':s}
Jo Jn—1 Jan —jn+1 ~Jo
[, do, B, ds0)
Jao : 1 . 1
Jan — 5 Jao+ § Ja.o

F1GURE 5 — General schematic of massive super-
multiplet states

What would happen if not the same
number of degrees of freedom ?

In the case where we start with j, = 0, we have
a scalar state |Q2) and four states with jio €
{o, —%, %, 0}.The chiral fermion is here again des-
cribed by a WEYL spinor with two components
and the rest of the states are a scalar and a
pseudo-scalar. Two of such supermultiplets are
needed to create a DIRAC fermion out of two
WEYL spinors. The corresponding four spin zero
states can be described as two complex sfermions
(superpartners of the left and right chiral compo-

nents of the DIRAC fermion).



D) Superspace

Let’s do a bit of formalism before in order to define what really is our superspace. We know from the
usual group theory that every continuous group G defines a manifold Mg via its parameters {r,} :

A G— Mg
lo= """} — {n)

where dim(G) = dim(Mg). To identify our structure, let’s define a coset G/H where g € G is
identified with g-h, ¥ h € H C G. For example, we can obtain the set of translations {a* = 2"} simply
by considering the coset Poincaré/Lorentz = {w"” a*}/{w"”} where the parameters are defined in
the corresponding section. This space is in fact MINKOWSKI space. We thus define N = 1 superspace
to be the coset :

(4.1)

SuperPoincaré/Lorentz = {w"”, a*, 0%, 6:}/{w"} (4.2)
meaning that we go from an element in the group that was parametrized by :

i@’ My +a# Py +6°Qa+Qab%) (4.3)

to : o
ei(ﬂ.“pp+3aQQ+Qd9d) (44)

20



D) Superspace

X(0,¢,)X(z,0,8) (62 Qa+Qat®) L2 Puti(0°Qat+Qab?)
_ o Outi((0+0Q+Q(0+9) )+ 3 [0Q+Q0,eQ+Q¢] (4.7)
I LT e G B 7Y

X(r,8, E_})X(O, €,€) = e Puti(0°Qa+Qa0%) Li(e*Qa+Qat)
_ 2 0u+i((0+9Q+Q(0+9) )~ 1[0Q+Q0,Q+Q7] (4.8)
_ 2 H((0+9Q+Q(0+8) ) —i(eom0—bokE) (right)

This allows us to identify the supersymmetric transformations for our supercoordinates depending

on the side of the action : B
5(Ief¢)m“ = i..{fﬂ"ulg = HU’HE)

O(right)T" = —i(ectf — Bo"'E)

- g (4.9)
5(zef;)9 T 5(n‘gh¢)9 =5
S(tefeyfa = Oright)Pa = €a
such that : ~ ~ ~
 — ' 4 oz, 8* — 6 + 46™, Bs — B4 + 604 (4.10)

21



3f () = V2e((2) + V2&x(2)

om(z) = Z50,((z)oe + €A

on(x) = —%60’“(9“)_((39) + e&(x)

0d(x) = L0pg(x)ote — %eo"@#j\(m)

0A,(r) = —%eaﬂC(m) — i/ 2¢€0,,0"((x) + %E@H)Z(SC) — iV/2€5,,0"\(x) — €5,£(x) — o€
VIO (x) = 2em(z) + e (A, (@) — 0, (x)

0§(x) = —ioted,n(x) + 5e0A — 01" el),, + ed(v)

V20X (x) = 2n(x)e — ate (A, (x) +id, f(x))

o) = —ig"ed,m(x) — LE0A + L5 EL,, + &d(x)

© e NS e W N

22



L. 0¢ = V2et) — V2et)

2. 6t = =26l — i\/201€0, 0 — —\/2eF — i/207€D,, ¢

3. 6F = —i\/20,000"€ — —i\/2D,1pate — 2igeg

1. ov, =1 (ea}u)_\ - )\O’ME) — 1 (60'#5\ - )\O’HE)
2. 0N = o"eF,, +ieD — oteF),, + ieD
3. 0D = J,Ao""e + 60"“’6#5\ — D, \ot'e + EJ"D#;\

Degrees of freedom | ¢ (boson) | ¢ (fermion) | F' (boson)
on-shell 2 2 0
off-shell 2 4 2

Degrees of freedom | v, (boson) | A (fermion) | D (boson)
on-shell 2 2 0
off-shell 3 4 1

23




E) Superfields

For the chiral superfield :
on shell : - 2 real degrees of freedom for the complex scalar
- 2 polarization states for the fermion

off shell : - 4 real degrees of freedom for the complex fermion

V(z,8.0) = O(y,8) + O (y.0)
V2
; (q&T (2) + V/3B0(z) — BOF (z) + 00189, 6 () —

— (qﬁ(:r) +V20i(x) — BOF (x) — i0"00,¢(x) + —=000,1(x)o"8 — i@ﬁéé[lgb(a:))

V2
= 2R¢ (¢(x)) + V20(z) + V200 () — 00F (z) — 00F () — 200+60,Im (¢(x))

+ = 000570,(r) — =060, (x) - %999678“8”9% (6(z))

V2 V2

000070, (z) — iﬂeéémgbf(a:))

(4.47) o



Let’s define a gauge group G = U(1), under which a set of matter superfields ®* transforms as :

Pt —y ¢ Mg pf Mgl (5.38)

o are defined as real charges and A is a complex function of (z,6,6) specifving the local gauge
transformation. We impose that A has vanishing chiral derivatives, basically turning it into a chiral
superfield, which ensures that the chiral nature of ®* and ® is preserved. We see that a chiral
superfield is mapped into a chiral superfield and that the & carry a representation of U(1),. The
factor 2 in the exponential comes from the fact that the imaginary part of the scalar component of
the A superfield is half the usual gauge transformation function in an abelian gauge theory. Because
A # AT, the kinertic D-term is not gauge invariant by itself :

DI — 2N 00 Pl =A% P = 2N~ N)ae f P (5.39)

so we see that we must introduce a compensating gauge superfield to restore the invariance un-
der gauge transformation. This is rectified by introducing a gauge vector superfield V' with gauge
transformation :

V— V +iA— Al (5.40)

and by modifying the kinetic term :

[@'0] — |2fe D (5.41)

25



[Ta, Tb} =3 abcTc, tr {TaTb} = TR0 (5.53)

where 7g is the representation constant of the representation R. Concerning the vector superfield, we
assume that it is given by V' = VT,. If the representation is unitary, meaning T, = T, we directly
have a real vector superfield. In order to define the gauge transformation, it is convenient to use :

A = AT, (5.54)

with A® being a chiral superfield. The gauge transtformation, with g the coupling constant, is :

_9i 2igAT _ _9igAT __ -

eZgV Y o 219A62gve2tgﬁ : e 2gV y e 2igA e 2gV€229A (555)
To fix the ideas, we choose to work in the WESS-ZUMINO gauge of the superfield V* where triple
products of V' or those with a higher number of V' factors vanish. In this gauge, any vector superfield
does not carry a dependence in #-terms meaning that the # component of A* must be real. Using the

BAKER-CAMPBELL-HAUSDORFF formula, that tells us :

5V = z[gv, A+ Af] — i - coth ([gv, A— A*D (5.56)

26



G) Breakin

(©QH|2) = (9 (i{Ql,Ql} +{@na}) o)
> 5 (19 Qa m)? + [t Qa Im))

1 (7.3)
4 o, =1

For any state |Q), this tells us that (| H[Q2) > 0 and it also tells us that states with vanishing
energy density are supersymmetric ground states of the theory. A supersymmetric vacuum state is
defined by the condition that it remains invariant under any supersymmetry transformation, which
is equivalent to say that a supersymmetric vacuum is annihilated by the supersymmetry generators
@ and Q. Such states are called ground states because the expectation value of H may never be
negative : they are supersymmetric because (0| H [0) = 0 implies Q |0) = @Q|0) = 0. Ground states
of zero energy preserve supersymmetry, while those of positive energy break it spontaneously.

27



H) MSSM

To access supersymmetry breaking, we study the derivatives of the scalar potential to deduce the
minimum values :

ap{neu Ta y 2 : 2
ng — 0= Hu® + %H{’* (HY'HY — HY'HY) (8.25)
8%6'& ral q 2 + g 2
THQ = 0=Hpuf - %HST (EY'HY - Hy'HY) (8.26)

If we assume that g # 0, the only solution to be able to satisfy both equations if to take HY and HY
to have vanishing vacuum expectation values :

(H)) = (Hy) =0 (8.27)

This is a zero minimum and thus supersymmetry in the electroweak sector is not broken at all. The
potential created by the Higgs bosons alone is not sufficient to ensure a supersymmetry breaking
in this sector, meaning that the model cannot compete with experimental results. This means that
we have to add terms to softly break supersymmetry in the Lagrangian. this is what we said when
introducing Lsorr. To deal with this problem, we introduce a soft breaking term in the Lagrangian
that we denote :

m12\H1|2 + m22|Hg|2 + b].LHlHQ + h.c (828) 78



H) MSSM

We can then find the

expression of the selectron mass matrix :

m,2 + m;? me(A% + ptan(8))
(el )2 (?‘) = (e}, h) TR e . AN
€R m, +myg eR
me(Ae + p*tan(s)) —cos(28)sin?(Oy ) M2

Notation Interpretation Parameters
tan(p3) ratio of the vacuum expectation values of the two Higgs doublets 1
M p0 mass of the pseudoscalar Higgs boson 1
L higgsino mass parameter 1
my, Moy, M3 bino, wino and gluino mass parameters 3
Mg, Mg, Mg, first and second generation squark masses 3
Mgy s Miy, My, third generation squark masses 3
my, Mep first and second generation slepton masses 2
mg, . Mz, third generation slepton masses 2
Ay, Ay, Ar third generation trilinear couplings 3
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H) MSSM

1. neutralinos : what we call neutralinos are the neutral fermions of the theory, namely B, W;
(we saw that the gauge partner of the sparticle is the boson responsible for the Z° boson and
the photon), and the two neutral components of the higgsinos. The mass matrix will be a 4 x 4
matrix involving couplings between the different particles :

B
lye o o W.
—5(3 Wi HY HY)Mg ng (8.111)
Hj
with :
my 0 —iMytan(fy )cos(B)  iMytan(fy, )sin(j3)
Voo — 0 Mo iMycos(f3) —iMwsin(5)
T | —iMytan(8w )cos(8)  iMyrcos(f3) 0 1]
iMwtan(Bw )sin(5)  —iMysin(j3) [ 0
(8.112)
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