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Content of the Internship

- Study of the A-body problem characterized by its symmetries

- Use of anew approximate symmetry : the isospin

- Deepening of central potentials and collision theory

- Study of the nucleon-nucleon system and its non-central interaction with the isospin formalism
- Generalization of isospin in the nucleus and Phase-Shift Method

- Study of realistic interactions : Yukawa’s works and QCD.

- Isospininresearch : mirror nucleus and cluster methods.



Symmetries at low energy

- Exact symmetries at low energy in the nucleus :
reflection
translation
rotation
time reversal
- These symmetries allow us to create complete sets of commuting observables, and to label the
states with qguantum numbers.

- Another exact symmetry from the nuclear interaction:

nuclear __ nuclear
Y = Vpp

——> Charge symmetry



Approximate isospin symmetry

- Hamiltonian of a A-body system:

A A A A A
DIEONIED DL TRED IS
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1
- Quasi-symmetry of the strong interaction between protons and neutrons : n) =|= —
2
2%
nuclear nuclear ~_ Y/nuclear
Vnn Vpp -~ V’n,p » 1 1
\/J _ Ip) = |§ . 5)
Charge invariance

- Bothare projections of the same particle called “nucleon”, and characterized by their isospin.
- Eventhough this symmetry is an approximate one, it is widely used in nuclear physics.



Bound and Scattering States

- Physical quantum states have to obey the postulates of quantum mechanics.

- Quantum states are divided in two groups : Bound and Scattering states.

- There are also resonance states which are "semi-bound" states with positive energy and can
become a diffusion state by tunneling through the potential barrier at any time. These states only
exist if the potential creates a dip in the positive part.

- Bound states are physical states described by a square-integrable stationary wave function:

+0C
/ p(z)dx = 1.

- Scattering states are non-physical state described by a stationary wave function bounded at any
point and not square-integrable. Consequently, they do not respect the postulates, but can be
physically interpreted with the probability current :

J= 4 (eVe - w9v)



Nucleon-Nucleon Interaction

Experimentally, only one bound state possible :

- One proton and one neutron = deuteron

- Angular momentum: J7© — 1+t

- Describing the system with a central potential ———) the only bound state is necessarily a S state.

- ForapureSwavefunction: (g = ty, + Uy with 1, the magnetic momentum of deuteron

butwe have: g ~ 0.857406puN # iy, + pp = 0.879794pN

- These two results are not very far apart, so the ground state of the deuteron cannot be a D stateor a S
state, but rather a mixture of D and S states.
- Consequently, the nucleon-nucleon interaction isn’t governed by a purely central potential.



PM__5( )b
pPe —s (-1)5H
Generalized Pauli Principle pr —s (—1)TH

Neutrons and protons being the same particle implies to update the Pauli Principle.

Antisymmetry of the 2-nucleons wave function by switching the nucleons’ position, spin and
isospin give us eigenvalues. and leads to a selection rule

Y(ni,ng) = —Y(ng,ny)

Py) = — |¢) Py = (-1)EHSH1HTH gy «—= L+ S+ Tis odd
P=pPMpopT

——> Selectionrule




Deuteron Ground State




Deuteron Ground State

Isospin | Spin | Angular | Parity | Allowed?
=3 [-9=1| Li= = Not Allowed
T=1l |8=0| L= - Not Allowed
T =0 |S=@| L=1 - Not Allowed
=4 [5=1| b= + Allowed
T={) |S9=1| Le=1 - Not Allowed
=@ |S=1| iz 2 + Allowed

afy98
| wd«:ul,eron

) = al3s1) + B13p1) |af = 96%, |B| = 4%

L+ S+Tisodd
[P=B L LLTES
J"=1"

We once again can
deduce that the
nucleon-nucleon
potential is not
central



Square wellin 3D
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Phase-shift method

C S L . l .
as — s [ —i(kr—-F) _ i(kr—5F _ 240
kL (T) . (6 Sie ) S =e
+00
1
Scattering amplitude: fk ((9) = ﬂ E (2l -+ 1)(55 — 1)PZ(COS 9)
[
[=0

Total elastic cross-section :

o(Ey) = 2 Z (20 +1)(5/ (Ex) — 1)(Si(Ek) — 1)
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Phase-shift method

Validity of this method :

Ve (r)y = vi(r) +
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Realistic interactions

- Toremedy the inaccuracies provided by the central potential, empirical “realistic” interactions can
be calculated and applied to model the nucleon-nucleon interaction. For instance, the Yukawa
potential :

C r

qukawa('r) = 7 OXI)(_X)

- These realistic interactions reproduce the bound and scattering states, which lead to the
conservation of the nucleon-nucleon symmetry.

R R 1 A 1 A
Veons = (V2° + V) + Vi)erta + VP + V2 + 5(1 + PV §(1 — PT)y
Charge invariant operator
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Yukawa pion

One-pion exchange potential : VOPEP = thl ’ tz

4 3\,  3)\2 —7/An
Ve = = f2hc '481 - 82 + (1 - + 2”) 512} c
3 T T r

S1 89 = (ZPa—l)

B At + Ao

Ar ;
t1-ta = (2P — 1)

N I i N =t

P, : spin exchange operator
P, : isospin exchange operator

t!

F1G. 2.6: Echanges de pions entre nucléons.
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Isospin and nucleus

- The notion of isospin can be extended to systems which have more than two particles. We can
define the total isospin number as :
T = Z £

- The states space of an A-body system is then the tensorial product of each singular states space:
€E=€R€eR...€4

- For anucleus with N nucleons and Z protons, we have the relationship :

N-Z §T§N+Z
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Towards research, study on mirror nuclei

exemple: *C (T, = 1), 1*N (T, = 0), 1*0 (T, = —1): multiplet T =1

- N :
R e ISR i B T S
6.09 - \_‘::- P ___[592 o*
o7 - 755065~ — ——_|5.17 -
1703 2+ BC+p ) 4.6280
13N+p
16954 50—+
1983569 3°)-
T P
395 "
[2.36] ol - o [2.44] L
lac 1 5 Tl B 140
T=>1
r=1 - Fe=1
== ->T=1,..
->T=1,.. 14N
T=0

-T=0,1,..



Towards research, study on mirror nuclei
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C(15) spectrum in the three-clusters models

Equivalence between two- and three- cluster models: Application to the (135 Cy and é5F6 nuclei
P.Descouvemont and M.Dufour (2024)

exp.

F(15) spectrum in the three-clusters models
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Conclusion

- A-body problem and its symmetries at low energy

- Approximate Isospin symmetry : application to the case of the nucleon-nucleon
interaction and the deuteron

- Use of the phase shift method as an alternative to calculate unbound states
- Realistic interactions to model the nucleon-nucleon non-central potential
- Study of how the Approximate Isospin symmetry is still currently used in research
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Annexe
Square Well

Radial Schrodinger equation of a particle of mass p :

Hy(r) = E(r)

But : H = —%A + V(r) ,with A = %% - HQ:Q in spherical coordinates with
central potential.

[_g (1 O L_) ; vm] b(r) = Bu(r)

ror:  R2p2
As L? commute with H, we introduce a spherical harmonic : 1(r) = Y;,,, (0, ¢) Ry (r)

2 92
Yin(8:0) (=505 + V) ) Ru) +

Ry(r)L*Yi;m (0, 6)
2pur?

- E}/lm (67 ¢)Rl (T)

But : L?Yix(0.¢) = hzl(l + 1)Y;n (0, @) , so we have :

R (18P 10+ 1)
2p

r Or? 72

) - V(r)] Ri(r) = ERi(r)

{ (-5 (445 - 142) - Vo) u(r) = Bu(), 0<r<a
—

2 2
2 (125 - WD) w(r) = Bur), e

with w(r) = rRi(r)
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Annexe
Square Well

We put [ = 0 to solve the radial equation and we introduce p = -

( A 4 B Vs 4 Qus B E)uo(p)=0a p<l,

< 2+2ua E)UO(p):Oa p>1/
%4—1}%—62)%(/}):0 p <1,
— 42 .
d—pz—e)uo(P)—O p =1

. 2 2
w1thv0=\/2"g—2v" and € = —2";—2]3

So, we have: ‘ .
ug(p) = Aret*? 4 Bie™r p <1,
ug(p) = Aze” + Boe™ P, p>1,

with k = /03 — €2

But, when » — 0 (p — 0), up(p) must cancel, so as ug(p) = Aysin(kp) +
B cos (kp) and cos (kp) — 1 when r — 0, By = 0. Moreover, ug(p) — 0 when
r — 00 s0 A2 = 0 (because e’ — oo when r — 00). So we have:

{ up1(p) = Aisin(kp), p <1,
ug,2(p) = Bae™ P, p>1,

When r = a (p = 1), there is continuity of the wave function and its derivative:

uf),l(/’ =1) B U6,2(P =1)
up1(p=1) woa(p=1)

kAicos(k) _ e “Bs
Aysin(k) 6e—fBz
— tan(k) = — K

PRE)
vg —k
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Annexe Isospin (Formalism)

Isospin operator and similarities to spin formalism :

Pk) k‘#) GF)

§‘<———>
Sy — 1o
S<—>

Eigenvalues:

t2 |tm,) = t(t + 1) [tm,)

S?=82+ 82+ 82— =12+ +
[gxa Sy] = 7h§z — [il,i‘z] — 7{/'\‘5

ts|tmy) = my |tmy)
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Annexe Isospin (Ladder operators)
tot_ = (f + ita) (k1 — ita)

Ladder operators and its eigenvalues

fy =4 + ity = 11 + &, — ilt1, 1]
£+ n)y =0 :'2_'§+t3

ty |p) = |n) (tmy| tot_ |tm,) = (tmy|t® — f‘é + t5 [tmy)
t_|n) = |p) =t(t+1) — my(my — 1)
t_|p)=0

ty [tme) = V/E(t + 1) — me(my + 1) [tmy)
E_ |tmy) = Vt(t+ 1) — me(my — 1) |tm,)
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Annexe Isospin (Projection operators)

| LA
=L, 9) = aln) + B1p)

| SO . .
Pr =~ P} = (5 +5) )
pry pr =i = 2y + £ 1p) +

= a|n)

«
2

Y

) =5 Ip)

2
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Annexe Isospin (Charge operators and total isospin)

. | - S & A -
g = 0(5 +t3) ¢ln) = 5 n) —ets|n) T?|TMy) =T(T + 1) |T M)
e 1 Ty |TMyp) = My |T My)
=g lm ez lm |
—0 Q|TMr) = 8(514 + t3)
X e : ) |TMy) = Ze |T My
q|1)> - _2_ |I)> _Ct:j |])> Ql 1> € | 1>
, 1
= g— In) + €5 n)
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