Setting up and diagnosing an exotic cosmological simulation

Fabien CASTILLO and Théo BRUANT

Université de Strasbourg

May 29, 2024

Introduction : the standard cosmological model ΛCDM

- \triangleright Gravitation described by general relativity.
- \triangleright Components of the model : baryons $+$ cosmological constant (Λ) + cold dark matter (CDM) + radiation (photons and neutrinos)
- ▶ Universe homogeneous and isotropic
- ▶ Universe in expansion : $r(t) = a(t) \times L$, redshift $z = \frac{1}{1+t}$ $1+a$ with $r(t)$ the comoving distance and L the physical distance

Université

de Strashourg

Introduction : the standard cosmological model ΛCDM

 \triangleright The small inhomogeneities will be amplified by gravitation during \approx 14 Gyr and lead to structure formation.

The development of gravitational instabilities

 \blacktriangleright Continuity equation :

$$
\dot{\delta} + \frac{1}{a}\nabla\left((1+\delta)\mathsf{v} \right) = 0
$$

▶ Euler equation :

$$
\dot{\mathbf{v}} + H\mathbf{v} + \frac{1}{a}(\mathbf{v}\nabla)\mathbf{v} + \frac{1}{a}\nabla\phi = 0
$$

Poisson equation :

$$
\Delta \phi - 4\pi G \overline{\rho} a^2 \delta = 0
$$

with v the speed of the dark matter fluid, ϕ the gravitational potential and $H = \frac{3}{3}$ $\frac{a}{a}$ the Hubble constant

Order of magnitudes

- ▶ 1 parsec (pc) $\approx 10^{16}$ m,
- ▶ Galaxy \approx 30 kpc,
- ▶ Cluster of galaxies \approx 10 Mpc,
- ▶ Observable Universe \approx 30 Gpc.

Here we are interested in scales between 10 and 500 Mpc.

Credits : Springel et. al (2005)

Cosmological observables

• Correlation function :
$$
\zeta(r) = \langle \delta(\mathbf{x})\delta(\mathbf{x} + \mathbf{r}) \rangle
$$

▶ Power spectrum : Fourier transform of the correlation function (measures the variance of δ)

$$
P(k) = \int d^3 \mathbf{r} \zeta(r) \exp(i\mathbf{k} \cdot \mathbf{r})
$$

 \triangleright σ_8 : dispersion of the density contrast in a sphere of radius $R_8 = 8 h^{-1} Mpc^*$:

$$
\sigma_8=\left\langle \left(\frac{3}{4\pi R_8^3}\int_{|\mathbf{x}|
$$

 $*$: $h = \frac{H_0}{100 \text{ km/s/Mpc}}$ ≈ 0.67 is the reduced Hubble constant [\[Aghanim, 2020\]](#page-21-0)

Fabien CASTILLO and Théo BRUANT — Exotic cosmological simulations 6 / 21

The S_8 tension [\[Abdalla, 2022\]](#page-21-1)

Study the distribution of matter in the Universe : measure $\mathcal{S}_8 = \sigma_8 \sqrt{\Omega_m/0.3}$. Different methods :

- \triangleright Cosmological microwave background : $S_8 = 0.84 \pm 0.030$ [\[Aiola, 2020\]](#page-21-2),
- ▶ Large scale structure catalogs (count of galaxy clusters) : $S_8 = 0.789 \pm 0.012$ [\[Pratt, 2019\]](#page-22-0)
- ▶ Gravitational lensing. $S_8 \approx 0.7781 \pm 0.0094$ [\[García-García, 2021\]](#page-21-3)

These measures depend on the cosmological model used to interpret the data

Université

de Strashourn

The S_8 tension

$$
S_8=\sigma_8\sqrt{\Omega_m/0.3}
$$

Comparison of S_8 values using different methods [\[Asgari, 2021\]](#page-21-4)

Goal of the internship

- \triangleright The S_8 tension may suggest that some additional physics should be added to the ΛCDM model
- \triangleright We will investigate exotic ingredients that modify small scale structures but leave the large scale structure invariant
- ▶ For scales smaller than \approx 10 Mpc, we cannot linearize the equations of motion : numerical simulations
- ▶ Originality of our approach : We combine more than one extension of ΛCDM. These extensions are mutually not exclusive but are rarely tried together

Université

de Strashourn

Methodology

- ▶ N-body code RAMSES [\[Teyssier, 2002\]](#page-22-1) to solve the equations of motion (total CPU time : 2400 hours)
- ▶ Initial conditions generated with the code MONOFONIC [\[Hahn, 2020\]](#page-21-5)
- \triangleright Box of 500 Mpc/h with a resolution of 256³ pixels
- ▶ We assume baryons are collisionless (no hydrodynamics)
- ▶ Simulation of ΛCDM used as a reference to interpret the power spectra and the S_8 value of the exotic models.

Exotic Ingredient 1 : Warm dark matter

- \triangleright Warm dark matter : dark matter that has an initial velocity after recombination, that depends of its mass [\[Bode, 2001\]](#page-21-7).
- \blacktriangleright It will escape more easily gravitational potential wells : less small scale structures
- ▶ Characteristic size of suppressed structures [\[Peter, 2009\]](#page-22-2) : $R\approx 0.2 \; (\Omega_m h^2)^{1/3} \; (\textit{m}/1 \; \text{keV})^{-4/3}$ Mpc
- \triangleright Observational constraints : $m > 5.3$ keV [\[Palanque, 2020\]](#page-21-6)

Credits : Angulo, 2021

Fabien CASTILLO and Théo BRUANT — Exotic cosmological simulations 11 / 21

Exotic Ingredient 1 : Warm dark matter

Visualization at $z = 0$:

Standard model

WDM, $m = 100$ ev

Université $12 / 21$ Fabien CASTILLO and Théo BRUANT - Exotic cosmological simulations de Strasbourg

Exotic Ingredient 1 : Warm dark matter

The lower the mass of warm matter, the more it reduces the power spectrum $(z = 1 / 7)$ Gyr ago)

Exotic Ingredient 2 : Primordial non gaussianities

 Λ CDM : the distribution of δ is assumed to be gaussian. Here we add a corrective term [\[Stahl, 2024\]](#page-22-3) :

$$
\Phi(\mathbf{k})=\Phi_G(\mathbf{k})+f_{NL}(\Phi_G^2(\mathbf{k})-<\Phi_G^2>),
$$

with
$$
f_{NL}(k) = \frac{f_{NL}^0}{2\left(1 + \tanh\frac{k_{min}}{\sigma}\right)} \left(\tanh\frac{k_{min}}{\sigma} + \tanh\left(\frac{k - k_{min}}{\sigma}\right)\right)
$$

Fabien CASTILLO and Théo BRUANT — Exotic cosmological simulations 14 / 21

de Strasbourg

Exotic Ingredient 2 : Primordial non gaussianities

$$
f_{NL}(k) = \frac{f_{NL}^0}{2\left(1 + \tanh\frac{k_{min}}{\sigma}\right)} \left(\tanh\frac{k_{min}}{\sigma} + \tanh\left(\frac{k - k_{min}}{\sigma}\right)\right)
$$

Exotic Ingredient 2 : Primordial non gaussianities

Different values of f_{NI}^0 favor over- or under-densities (z = 1)

S_8 estimation

WDM decreases S_8 , PNG can increase or decrease S_8 ($z = 1$)

 $17 / 21$

Université de Strasbourg

Our original approach : WDM and PNG together

Combining the two parameters doesn't produce a linear response : $P_{NG} \times P_{WDM} \neq P_{NG}$ and WDM

 $m=100$ eV, $f_{\rm NL}^0>0$: non linearities accentuate structure suppression : "snowball effect"

Our original approach : WDM and PNG together

 $m=100$ eV, $f_{\rm NL}^0 < 0$: non linearities favorize the effect of non gaussianities over WDM

Our original approach: WDM and PNG together

 $m = 200$ eV, $f_{\text{NL}}^{0} < 0$: Power spectrum very similar to ACDM.

Conclusions

- \triangleright Tensions such as S₈ are challenging the Λ CDM model and may be calling for new physics (warm dark mtter, primordial non gaussianities...)
- ▶ Using numerical simulations, we investigated the combined effect of WDM and PNG on structure formation
- ▶ Combining several extensions has not extensively been tried and may prove fruitful. In particular, constraints on warm dark matter may be overestimated
- \triangleright We showed, when combining the two, that the non-linearities always tend to accentuate the effect of primordial non gaussianities over WDM.

References I

▶ Abdalla (2022).

Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies.

Journal of High Energy Astrophysics.

▶ Aghanim (2020). Planck 2018 results-vi. cosmological parameters. Astronomy & Astrophysics.

▶ Aiola (2020). The atacama cosmology telescope : Dr4 maps and cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2020.

▶ Asgari (2021). Kids-1000 cosmology : Cosmic shear constraints and comparison between two point statistics. Astronomy & ; Astrophysics.

▶ Bode (2001). Halo formation in warm dark matter models. The Astrophysical Journal.

García-García (2021).

The growth of density perturbations in the last 10 billion years from tomographic large-scale structure data.

Hints, neutrino bounds, and wdm constraints from sdss dr14 lyman-α and planck full-survey data.

Journal of Cosmology and Astroparticle Physics.

Hahn (2020). Music2-monofonic : 3lpt initial condition generator. Astrophysics Source Code Library.

Palanque (2020).

Journal of Cosmology and Astroparticle Physics. Fabien CASTILLO and Théo BRUANT — Exotic cosmological simulations 21 / 21

de Strasbourg

References II

Peter (2009). Primordial cosmology. Oxford University Press.

Pratt (2019).

The galaxy cluster mass scale and its impact on cosmological constraints from the cluster population.

Space Science Reviews.

Stahl (2024). Scale-dependent local primordial non-gaussianity as a solution to the s 8 tension. arXiv preprint arXiv :2404.03244.

▶ Teyssier, R. (2002). Cosmological hydrodynamics with adaptive mesh refinement-a new high resolution code called ramses.

Astronomy & Astrophysics.