Supervised by Paolo Bianchini

N-body simulations of globular clusters for deep-learning applications.

Hugo Spitz Gabriel Bounias

What is a globular cluster ?

- Really high star density
- Quite **old** and stable structure

credit: ESO/INAF-VST/OmegaCAM

credit: NASA, ESA, and the Hubble SM4 ERO Team

Intuitive characteristics :

Number of stars : 100 000 to 1 million

- ➤ Diameter : 20 to 50 pc
- ➢ Distance to galaxy center : 40 to 100 kpc
- ➤ Age : ~11 Gyr
- Simulation

Objectives

- Extract the **mass distribution** and fundamental **characteristics** of globular clusters from a simulation

Transform data of the simulation as if it was observed by the **JWST** to feed a **deep learning project**

Create a visualisation of the simulated globular cluster and its evolution

Table of contents

Simulation and data extraction

Can we easily find fundamental characteristics as mass distribution ?

From simulation to images

How to link simulation and observations ?

Simulation and data extraction

Upstream work

R_ij

- N-body simulation : a lot of interactions → HPC, the greatest simulation of globular clusters (400 days)
- Code : Nbody6++GPU (*ref : Wang, 2016, Renaud and Gieles, 2015*) + combine
 gravitational interactions and stellar evolution of 1 million stars
- To begin we took 4 among 5000 snapshots to study the globular cluster

Mass of stars in the globular cluster

Total mass as function of the time

- Stars **escape** the globular cluster towards the galaxy

 Stars are losing mass because of stellar evolution

Half mass and half luminosity radii

- The size of the globular cluster
 increases induced by virial theorem
- Small **difference** due to stellar evolution and dark remnant

Evolution of half mass and luminosity radii

HR diagram

Mass segregation

Mean mass as function of dimensionless radius

- Most massive stars go to the center of the globular cluster : mass segregation
- It is due to loss of kinetic
 energy for high mass stars in
 interaction with smaller ones

Black holes segregation

- We clearly see the segregation effect :
 - \Rightarrow black holes go to the **center** of the globular cluster with time
- The globular cluster is not spherical but **elliptical** on the x-z/y-z plane (rotation along z-axis)

Projection of the globular cluster at 12 Gyr

Number of black holes

Evolution of the number of black holes

- As stellar evolution creates black holes only **early** in time, we expect **constant** number of black holes in the cluster
- Decrease of the number of black
 holes : huge central density leads
 to high energetic interactions
 kicking them

Artificial Intelligence necessity

- Difficult to predict the mass of a globular cluster and its distribution because multi-dimensional system with complex dynamical properties in constant evolution
- Hard to **fit** each observation of globular clusters with precise simulations
 - need **deep-learning** to generalise the process.

1/47

Paolo Bianchini & Pietro Cardini (2021)

From simulation to images

02

How to create realistic images?

- Images as seen by **JWST** using **C++ code** made in collaboration with **P. Bianchini**
- Code : from positions, velocities, masses, luminosities... → "realistic" images (color, optical distortion...)

C++ Code

Simulated star from previous data

First images of the globular cluster

- Images combine observations in **3 filters** of JWST on 3 different wavelengths domains
- We can adjust parameters such as **distance**, **angle** or **age**

Toward a video

- Necessity to understand how to make the video
 fluid and esthetic
 (distance step, time step..)
- Understand wich
 phenomena we want to
 highlight with our videos

Challenges

- Deal with **2 terabytes** of data (the **greatest** globular cluster simulation)
- The huge **runtime** of our C++ code to give us a **single** image
 - → 10 minutes per image and 18 images per second of video
 → 5000 images → 34 days of running code !
- How can we manage this problem ?

Answers

Make the code parallel (simultaneous task on several CPUs)
 40 CPUs + 1 day of running code

The final video

t=0.00 Gyr d=7122.1 kpc

Conclusion

- Globular clusters are complex dynamical systems and need new tools to be understood
- We worked on visualisation and "realization" processes
- Our images contribute to the beginning of a machine learning project

Annex : Stars evolution in a HR diagram

23

Annex : Virial theorem

2K + W = 0 Kinetic Gravitational potential

If $W \searrow$ due to escaping stars \Rightarrow K \nearrow to respect virial theorem \Rightarrow The cluster size increases

Annex : JWST filters

