
IPCMS, under supervision of Drs. M. Bailleul & 
P. Noel

CASTILLO GUERRERO Adán
LEROY Victor

THz dynamics of an 
antiferromagnet at the 

nanoscale



Introduction



THz domain
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Domain of light:

Figure : location of the THz gap in the electromagnetic 
spectrum (Khiabani, 2019).
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THz gap
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● Commercial GHz emission:

● State of the art THz emission:

100mW at 10 GHz ( 5G home router)

10μW at 500GHz (TeraScan 1550)

Requirements become bigger and 
expensive very fast

technological gap

Figure : THz production at SOLEIL (Evain, 2019).



THz gap
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THz tech is on 
his infancy

● Commercial GHz emission:

● State of the art THz emission:

100mW at 10 GHz ( 5G home router)

10μW at 500GHz (TeraScan 1550)

Requirements become bigger and 
expensive very fast

technological gap

To breach it

Materials !



Antiferromagnets
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Solid state lecture reminder:

Figure : NiO crystal structure 
(S. Rezende, et. al, 2019).

anisotropy
external fieldexchange



Antiferromagnetic resonance
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Application of external magnetic field

Spin precession around equilibrium 
positions

Figure : Precessions of the two modes of 
antiferromagnetic resonance (P. Noël, 2023).

Figure : NiO crystal structure 
(S. Rezende, et. al, 2019).



How can we measure AF resonance ?
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How can we measure AF resonance ?
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And how can we improve upon it ?



Outline

6

3.Experimental setup :

➔ Refractive index
➔ NiO resonance

1.

2.

Conclusion

Improving measures :

➔ Planar antennas
➔ Optimization + 

testing



I. Experimental setup
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Toptica TeraScan 1550
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Lasers



Toptica TeraScan 1550
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THz emission

THz Beats !

Photodiode
(InGaAs / GaAs)

THz emission

(not the only way)



Testing
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Sample goes 
here

emiter

receiver
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What can we measure with this setup ?

Measuring specific peak of 
absorption for different 

samples.   

Visible :
Fabry-Perot interferences

 + 
absorption of substrate



Fitting of the Airy distribution function 
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n = 3.42
n = 3.06



Values found within the literature 

20

Federico Sanjuan et al. 2012



Testing - NiO
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emiter

receiver

Figure : NiO sample by 
Christophe Lefevre (IPCMS).



Measuring AF resonance: NiO
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NiO ?

Figure : NiO sample by 
Christophe Lefevre (IPCMS).
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NiO ?

Figure : NiO sample by 
Christophe Lefevre (IPCMS).



Measuring AF resonance: NiO
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NiO ? Air absorption !

Figure : NiO sample by 
Christophe Lefevre (IPCMS).



Measuring AF resonance: NiO
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NiO ? Air absorption !

NiO behaviour visible at 
around 1000 GHz

Figure : NiO sample by 
Christophe Lefevre (IPCMS).



Measuring AF resonance: NiO
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This is a bulk measurement

Some things to consider:

How can we improve this ?

Localize it ?Amplify it ?



II. Improving measures
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Antennas, how do they work ?
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Figure : Antennas are the transition between a guided wave and a 
free propagating one, J. Kraus, 1988.



Antennas for THz local amplification
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Figure : Local amplification of EM field, Runge et al., 
2020.

Figure : Planar antenna over substrate, Runge et 
al., 2020.

Antennas Field amplification



What are we doing ? 
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What we are looking at
Three antenna designs
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Dipole   Simple bow tie Fancy bow tie



Simulation and optimization
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Optimization with CST.

● Over all relevant parameters
● Two ways:

○ Using plane waves
○ Using local excitation (port)
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Visualisation of the absorption by the antennas:



Antennas comparison
Simulations made using a port signal
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S : The scattering parameter 

Figure : Antenna emission,  
(M. Pacé, et al. 2024)



Modeling and fabrication
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La = 245 μm 
Le = 10 μm
Ec = 45 μm
Ee = 10 μm
Ea = 123 μm



Modeling and fabrication
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La = 245 μm 
Le = 10 μm
Ec = 45 μm
Ee = 10 μm
Ea = 123 μm



Testing - reminder
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Spectrum
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Comparing spectrum of the SiO2 substrate and the antenna with air



Spectrum
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Comparing spectrum of the SiO2 substrate and the antenna with air

We can get the 
transmittance!



Transmittance
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III. Concluding remarks
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Conclusion - what did we learn ?
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➔ Antiferromagnetic effects show great promise
➔ AF resonance is at the heart of new spintronic developments
➔ Antennas might be used to improve AF spintronic technology
➔ We were able to perform measurements of optical index
➔ Antenna effect was not noticeable due to noise



Conclusion - what did we learn ?
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Outlook

➔ Antiferromagnetic effects show great promise
➔ AF resonance is at the heart of new spintronic developments
➔ Antennas might be used to improve AF spintronic technology
➔ We were able to perform measurements of optical index
➔ Antenna effect was not noticeable due to noise

➔ Vacuum measurement
➔ Put antenna in NiO (how ?)
➔ Use a laser probe and other material to study local effect (appendix)
➔ Combine with local electric measurements



Appendices
To answer good and bad questions



Charge and spin current
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Charge and spin current
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https://arxiv.org/abs/2211.02241



Direct Spin Hall Effect
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Antennas for local THz detection
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Runge et al., , Opt. Express (2020)Runge et al., , Opt. Express (2020)

Use an antenna to amplify local 
field

Improved measurements !



Antennas for THz emission 
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Thz emission using planar antennas, from Increasing TeraHertz 
spintronic emission with planar antennas, Matthias Pacé, et. al.

How ? Spin Hall effect !

1. IR PUMP absorbed by FM Pt

2. Spin current -> Electric current

3. THz radiation

But we are not doing this !


