

des Matériaux de Strasbourg

de **physique** et **ingénierie** Université de Strasbourg

THz dynamics of an antiferromagnet at the nanoscale

CASTILLO GUERRERO Adán LEROY Victor

IPCMS, under supervision of Drs. M. Bailleul & P. Noel

Introduction

THz domain

Domain of light:

 $\nu \to 1 \mathrm{THz} = 10^3 \mathrm{GHz}$

 $\lambda \to 1 \mathrm{THz} \approx 300 \mu \mathrm{m}$

Figure : location of the THz gap in the electromagnetic spectrum (Khiabani, 2019).

100mW at 10 GHz (5G home router)

100mW at 10 GHz (5G home router)

• State of the art THz emission:

10µW at 500GHz (TeraScan 1550)

100mW at 10 GHz (5G home router)

• State of the art THz emission:

10µW at 500GHz (TeraScan 1550)

Figure : THz production at SOLEIL (Evain, 2019).

100mW at 10 GHz (5G home router)

• State of the art THz emission:

THz tech is on his infancy

10µW at 500GHz (TeraScan 1550)

Requirements become bigger and expensive very fast

To breach it

Materials!

Antiferromagnets

Solid state lecture reminder:

$$H = -\gamma \sum_{i,j} J_i^z J_j^z + g\mu_B B \sum_i J_i^z - W_{anis}$$

exchange external field anisotropy

Figure : NiO crystal structure (S. Rezende, et. al, 2019).

Figure : Precessions of the two modes of antiferromagnetic resonance (P. Noël, 2023).

How can we measure AF resonance ?

How can we measure AF resonance ?

And how can we improve upon it ?

Outline

- → Refractive index
 - → NiO resonance

Improving measures :

- → Planar antennas
- → Optimization + testing

I. Experimental setup

Toptica TeraScan 1550

8

Toptica TeraScan 1550

Testing

emiter

Sample goes

receiver

What can we measure with this setup?

Measuring specific peak of absorption for different samples.

Visible : Fabry-Perot interferences + absorption of substrate

Fitting of the Airy distribution function

$$A_{
m trans}' = rac{I_{
m trans}}{I_{
m inc}} = (1-R_1)(1-R_2)A_{
m circ} = rac{(1-R_1)(1-R_2)}{\left(1-\sqrt{R_1R_2}
ight)^2 + 4\sqrt{R_1R_2}\sin^2(\phi)}.$$

Values found within the literature

Table I. Refractive index and intensity absorption coefficients of studied materials.

Material	n	α (cm ⁻¹)	Comments
Silica	1.98 ± 0.02	4.2 ± 0.4	Eq. (3)
Silicon	3.56 ± 0.14	88 ± 7	High conductivity
Sapphire	3.31 ± 0.25	18 ± 4	Commercial quality

Federico Sanjuan et al. 2012

Testing - NiO emiter

Figure : NiO sample by Christophe Lefevre (IPCMS).

receiver

Figure : NiO sample by Christophe Lefevre (IPCMS).

Figure : NiO sample by Christophe Lefevre (IPCMS).

Figure : NiO sample by Christophe Lefevre (IPCMS).

NiQ? Air absorption !

NiO behaviour visible at around 1000 GHz

II. Improving measures

Antennas, how do they work?

Figure : Antennas are the transition between a guided wave and a free propagating one, J. Kraus, 1988.

Antennas for THz local amplification

Figure : Planar antenna over substrate, Runge et al., 2020.

Figure : Local amplification of EM field, Runge et al., 2020.

Antennas — Field amplification

What we are looking at

Three antenna designs

Simulation and optimization

Optimization with CST.

- Over all relevant parameters
- Two ways:
 - Using plane waves
 - Using local excitation (port)

Visualisation of the absorption by the antennas:

Antennas comparison

Simulations made using a port signal

$$F = \sqrt{1 - |S|^2}$$

S : The scattering parameter

Modeling and fabrication

La = 245 µm Le = 10 µm Ec = 45 µm Ee = 10 µm Ea = 123 µm

Testing - reminder

Spectrum

Comparing spectrum of the SiO2 substrate and the antenna with air

Spectrum

Frequency [GHz]

Photocurrent [nA]

Comparing spectrum of the SiO2 substrate and the antenna with air

Transmittance

$$A_{
m trans}^\prime = rac{I_{
m trans}}{I_{
m inc}}$$

III. Concluding remarks

Conclusion - what did we learn ?

- → Antiferromagnetic effects show great promise
- \rightarrow AF resonance is at the heart of new spintronic developments
- → Antennas might be used to improve AF spintronic technology
- \rightarrow We were able to perform measurements of optical index
- → Antenna effect was not noticeable due to noise

Conclusion - what did we learn ?

- → Antiferromagnetic effects show great promise
- → AF resonance is at the heart of new spintronic developments
- → Antennas might be used to improve AF spintronic technology
- \rightarrow We were able to perform measurements of optical index
- → Antenna effect was not noticeable due to noise

Outlook

- → Vacuum measurement
- → Put antenna in NiO (how ?)
- → Use a laser probe and other material to study local effect (appendix)
- → Combine with local electric measurements

Appendices

To answer good and bad questions

Charge and spin current

Charge and spin current

https://arxiv.org/abs/2211.02241

Direct Spin Hall Effect

Antennas for local THz detection

Runge et al., , Opt. Express (2020)

Runge et al., , Opt. Express (2020)

Antennas for THz emission

How? → Spin Hall effect !

- 1. IR PUMP absorbed by FM Pt
- 2. Spin current -> Electric current
- 3. THz radiation

But we are not doing this !

Thz emission using planar antennas, from *Increasing TeraHertz spintronic emission with planar antennas*, Matthias Pacé, et. al.