

P&i Faculté de physique et ingénierie Université de Strasbourg

des Matériaux de Strasbourg

THz dynamics of an antiferromagnet at the nanoscale

CASTILLO GUERRERO Adán LEROY Victor

IPCMS, under supervision of Drs. M. Bailleul & P. Noel

Introduction

THz domain

Domain of light:

 $\nu \rightarrow 1 \text{THz} = 10^3 \text{GHz}$

 $\lambda \rightarrow 1 \text{T} \text{Hz} \approx 300 \mu \text{m}$

Figure : location of the THz gap in the electromagnetic spectrum (Khiabani, 2019).

● Commercial GHz emission:

100mW at 10 GHz (5G home router)

Commercial GHz emission:

100mW at 10 GHz (5G home router)

State of the art THz emission:

10μW at 500GHz (TeraScan 1550)

Commercial GHz emission:

100mW at 10 GHz (5G home router)

State of the art THz emission:

10μW at 500GHz (TeraScan 1550)

Figure : THz production at SOLEIL (Evain, 2019).

Commercial GHz emission:

100mW at 10 GHz (5G home router)

State of the art THz emission:

THz tech is on his infancy

10μW at 500GHz (TeraScan 1550)

Requirements become bigger and expensive very fast

To breach it

Materials !

Antiferromagnets

Solid state lecture reminder:

×.

$$
H = -\gamma \sum_{i,j} J_i^z J_j^z + g \mu_B B \sum_i J_i^z - W_{\text{anis}}
$$

exchange
external field
anisotropy

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

Figure : NiO crystal structure (S. Rezende, et. al, 2019).

Figure : Precessions of the two modes of antiferromagnetic resonance (P. Noël, 2023).

How can we measure AF resonance ?

How can we measure AF resonance ?

And how can we improve upon it ?

Outline

-
- \rightarrow NiO resonance

Experimental setup :
 $\bullet \rightarrow \text{Reference}$ $\bullet \rightarrow \text{NiO resonance}$ Conclusion

> 2. Improving measures :

- \rightarrow Planar antennas
- \rightarrow Optimization + testing

I. Experimental setup

Toptica TeraScan 1550

8

Toptica TeraScan 1550

Testing

emiter

Sample goes **here**

receiver

What can we measure with this setup ?

Measuring specific peak of absorption for different samples.

Visible : Fabry-Perot interferences + absorption of substrate

Fitting of the Airy distribution function

$$
A'_{\text{trans}} = \frac{I_{\text{trans}}}{I_{\text{inc}}} = (1-R_1)(1-R_2)A_{\text{circ}} = \frac{(1-R_1)(1-R_2)}{\left(1-\sqrt{R_1R_2}\right)^2+4\sqrt{R_1R_2}\sin^2(\phi)}.
$$

Fitting of the transmittance of Sapphire substrate R1=R2=0.11;n=3.06 $1.3 -$

Values found within the literature

Table I. Refractive index and intensity absorption coefficients of studied materials.

Federico Sanjuan et al. 2012

Testing - NiO emiter

Figure : NiO sample by Christophe Lefevre (IPCMS).

receiver

Figure : NiO sample by Christophe Lefevre (IPCMS).

Figure : NiO sample by Christophe Lefevre (IPCMS).

Figure : NiO sample by Christophe Lefevre (IPCMS).

Air absorption !

NiO behaviour visible at around 1000 GHz

II. Improving measures

Antennas, how do they work ?

Figure : Antennas are the transition between a guided wave and a free propagating one, J. Kraus, 1988.

Antennas for THz local amplification

Figure : Planar antenna over substrate, Runge et al., 2020.

Figure : Local amplification of EM field, Runge et al., 2020.

Antennas \longrightarrow Field amplification

What we are looking at

Three antenna designs

Simulation and optimization

Optimization with CST.

- Over all relevant parameters
- Two ways:
	- Using plane waves
	- Using local excitation (port)

Visualisation of the absorption by the antennas:

Antennas comparison

Simulations made using a port signal

$$
F=\sqrt{1-|S|^2}
$$

S : The scattering parameter

Modeling and fabrication

La = 245 μm Le = 10 μm $Ec = 45 \mu m$ Ee = 10 μm Ea = 123 μm

Testing - reminder λ_i AC bias \sim Laser #1 THz emitter **Sample position** Laser beat **THz receiver** Laser #2 Lock-in detection λ_2

Spectrum

Comparing spectrum of the SiO2 substrate and the antenna with air

Spectrum

Photocurrent [nA]

Comparing spectrum of the SiO2 substrate and the antenna with air

Transmittance

$$
A'_{\rm trans} = \frac{I_{\rm trans}}{I_{\rm inc}}
$$

III. Concluding remarks

Conclusion - what did we learn ?

- ➔ Antiferromagnetic effects show great promise
- \rightarrow AF resonance is at the heart of new spintronic developments
- ➔ Antennas might be used to improve AF spintronic technology
- ➔ We were able to perform measurements of optical index
- \rightarrow Antenna effect was not noticeable due to noise

Conclusion - what did we learn ?

- ➔ Antiferromagnetic effects show great promise
- \rightarrow AF resonance is at the heart of new spintronic developments
- ➔ Antennas might be used to improve AF spintronic technology
- ➔ We were able to perform measurements of optical index
- \rightarrow Antenna effect was not noticeable due to noise

Outlook

- \rightarrow Vacuum measurement
- \rightarrow Put antenna in NiO (how ?)
- ➔ Use a laser probe and other material to study local effect (appendix)
- \rightarrow Combine with local electric measurements

Appendices

To answer good and bad questions

Charge and spin current

Charge and spin current

https://arxiv.org/abs/2211.02241

Direct Spin Hall Effect

Antennas for local THz detection

ZnTe

 $\frac{1}{2}$

 $TH₂$

Probe

 λ /4

WP

Runge et al., , Opt. Express (2020) Runge et al., , Opt. Express (2020)

Antennas for THz emission

How ? \longrightarrow Spin Hall effect !

- 1. IR PUMP absorbed by FM Pt
- 2. Spin current -> Electric current
- 3. THz radiation

But we are not doing this !

Thz emission using planar antennas, from *Increasing TeraHertz spintronic emission with planar antennas,* Matthias Pacé, et. al.