

Killian Marin & Alexandra Lorange

Supervisor: Daniele Preziosi

IPCMS – University of Strasbourg

| Uni | versity      |  |
|-----|--------------|--|
|     | of Strasbour |  |



# General introduction to the topic

Supraconductivity in nickelates
Influence of doping and crystal structure
Chemical topotactic reduction approach
A more « physical » approach



Superconductivity in an infinite-layer nickelate Danfeng & al., Nature, 2019





### Presentation of the approach





3

#### Crystal perovskite structure

## Experimental device (1)



MACOR support on which the sample is fixed using silver paste



Wire connection used to apply an electric field through the sample



4

Thermocouple

## Experimental device (2)



Central control pannel (pumps + thermocouple) Primary+Secondary pumping system





#### Pumping system scheme

## X-rays diffraction

#### Bragg's law : $n\lambda = 2d \sin\theta$



Diffraction spectrum of the sample before reduction



X-ray spectra plotting application

http://deuns.chez.com/sciences/drx/drx2.html



Image of a diffractometer (a) and scheme of a diffractometer (b)

## Effect of voltage

► Diffraction spectra of NdNiO3 samples, with parameters : 6 hours, 300°C



#### Effect of voltage direction

► Diffraction spectra of NdNiO3 samples, with parameters : 6 hours, 300°C



no shift for -10V !

### Why is there no peak shift at -10V ?



### Effect of temperature

10

Diffraction spectra of NdNiO3 samples, with parameters : 6 hours, +10 V



## Effect of time

11

► Diffraction spectra of NdNiO3 samples, with parameters : +10V, 300°C



# Trials on a new sample : From NNO to PNO

Structure and properties of the new sample, new approach for the reduction



### Transport measurement of PNO

13



Transport measurement on PNO sample obtained via physical approach (DS100C)

Critical Temperature ~ 9.6 K

Discovery of supraconductivity in PNO via physical approach 🗧

#### <u>Conclusion</u>

- Success of the new physical method
- Advantages and Disadvantages
- Next step: apply this to more samples

#### Transport measurements of PNO





#### Annex









#### Annex





#### Annex

17

| Sample name | Voltage (V)                              | Temperature (°C) | Time (hours) |
|-------------|------------------------------------------|------------------|--------------|
| DS076A      | +5                                       | 300              | 6            |
| DS076B      | experience stopped due to a burning wire |                  |              |
| DS076C      | +10                                      | 300              | 6            |
| DS076D      | +20                                      | 300              | 6            |
| DS076E      | +10                                      | 315              | 6            |
| DS076F      | +10                                      | 285              | 6            |
| DS076G      | -10                                      | 300              | 6            |
| DS076H      | +10                                      | 300              | 12           |
| DS076I      | +10                                      | 315              | 6            |

Table 1: Experience parameters of STO/NNO/Pt

#### Bragg's law : $n\lambda = 2d \sin\theta$



Illustration of Bragg's law