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Key question and Summary

How can we compute properties of semiconductors
within the tight-binding method ?
@ State of the art

© Calculation method
@ Tight-binding method
@ Slater Koster parameter
@ Chadi and Cohen determinant
@ Tetrahedron method and effective mass

© Results
@ Crystalline structure
@ Silicon
@ AsGa

@ Conclusion
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State of the art

@ Semiconductors have a band gap between their valence and
conduction band

@ Very used in industry due to their price and abondance

@ Specific properties of Silicon and AsGa : their bands structures,
densities of states and hole’'s masses

o Tight-Binding approach
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Method - Tight-Binding method

Parametrized method

Simple model : electron on each site has a probability to hope on
neighbours’ site

In this approach the Bloch wave function is a LCAO :

@ Interactions between two sites :

< ol Fpy >= 3 R / 6100 Hou(x — R)
Rl

Very complicated !
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Method - Slater Koster parameter

Using a local frame to simplify calculation

Slater Koster sp integrals

2%
Sb |

x x

5= spa=0 ppa=0 pp =i

Figure 1: Orbitals’ interactions Figure 2: Rotation between global and
local frame
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Method - Slater Koster param

Finally we get our constants to fit! :

Tasre VL Energy integrals (in Rydbergs) for diamond,
from Herman’s calculations.
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interactions

1J.C. SLATER and G.F. Koster Simplified LCAO Method for the Periodic Potential
Problem
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Method - Chadi and Cohen determinant

Determinant of the hamiltonian representing nearest-neighbours
interactions between 2 atoms? :
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Figure 5: Determinant for interactions

2D. J. CHADI and M. L. COHEN Tight-Binding Calculations of the Valence Bands
of Diamond and Zincblende Crystals
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Tetrahedron method and effective mass

@ Analytical formula for density of states g(E) :

1 ds
n dE = — P
en(E)IE = 43 /SH(E) VEA

o Effective mass :

110
m*  h2 Ok?
o Conduction mass my :
3 1 2
ms m;  my

with m] and m7 longitudinal and transverse masses
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Results - Crystalline structure

o Si ( 35°3p?) and AsGa (As :4s%4p> , Ga :4s?4p') have diamond
structures :

4nla,

Figure 6: Silicon's Bands structure with Figure 7: First Brillouin zone
orbitals’ contribution
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Results - Silicon

Bands and DOS

Considering only first neighbours and using :
Es=0,E, =7.20, Vss = —8.13, V5, = 5.88, Vi = 3.17, V,, = 7.51

(units : eV)

Orbitals” contributions s and p for Silicon

Density of states and orbitals contribution for Silicon

| contribution-s
: B contribution-p

Figure 8: Silicon’s Bands structure with
orbitals’ contribution
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Figure 9: Silicon’s density of states

May 28, 2024 10/25



Results - Silicon : Ligth and heavy holes

Band structure of Silicium (Diamend structure)

4 Light holes & Heavy holes for Silicium (Diamond Streuture)
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Figure 10: Silicon’s Bands structure Figure 11: Fit near I point

We found mpp = 0.34 and my, = 0.16 (in atomic units i = mg = 1) while
experiments> measured : mp, = 0.49 and my, = 0.16

3Solid State Physics, Giuseppe Grosso and Giuseppe Pastori Parravicini, Table 13.1
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Results - AsGa : Bands and

S

Considering only first neighbours and using :
Ves = —7.00, V5p = 7.28, V5, = 3.70, V, = 0.93, V,, = 4.72,

E,, = —6.01, E,

Orbitals' contributions s and p for AsGa

T
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Figure 12: AsGa's Bands structure with
orbitals’ contribution
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Figure 13: AsGa's density of states
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Results - AsGa : Ligth and heavy holes

Band structure of GaAs (Diamond structure) Light holes & Heawvy holes for GaAs (Diamond Strcuture)
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Figure 14: AsGa's Bands structure Figure 15: Fit near I point

We found mp, = 0.54 and my, = 0.14 (in atomic units i = mg = 1) while
experiments* measured : my;, = 0.48 and my, = 0.09

4Solid State Physics, Giuseppe Grosso and Giuseppe Pastori Parravicini, Table 13.1
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Conclusion

@ Learn how to compute band structure and others properties

@ Above our approach...
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Conclusion

@ Learn how to compute band structure and others properties

@ Above our approach...

o Relativistic effects
e Spin-orbit coupling
o Optical transition
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Tight-Binding wave function

For a crystal with Na atoms per unit cell the crystal wave function can be written as:

1 k(R 1T,) | . .
| Wn,rf> = W ZC,JW_W Zel A ‘ J-1, lﬂ’l} with N=N_ x N,

t,lm R;

- - - L . -
Tq . Cq . Tq’ -

! . .-""I . . .
Sty e |/ Toa |/ To s

The Bloch wave function of each sub-lattice of atom located at 71, is given by

) 1 K(R.

k ik(Rj+1,)

| ¢rim ) Z € J+T ‘
Y} Ncei] R;
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Tight-Binding wave function

< nl Hltpm >= szef TR [ 637 R)Mom(7 - R)

Let's put x=r— R;:

. 1 c By [
<l >= 1 33" FER [ G Hon(x— (R~ R)
R R
Let's put : R = Rj— R;, R is a lattice’s vector.

<¢n‘H|@Z)m >= NZZeIkR//¢n Hﬁbm X — )

R R

Sum over R; simplifies 1/N and we get :
< o Hlpm >= Z kR /gbﬁ(x)/thﬁm(x R)
R/
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Reciprocal space

Bloch's theorem : v, = e"E‘?u,,k(?) with u(7+ F?) = unk(P)

Born-Von Karman BC : we can take box of length L big enough to
have ¥(F+ L) = ¥(7)

o Bloch + BVK : 9)(7) = 1(F+ L)ekl = ekl = 1 with L = Nja;
Quantification of k : eNik-a: — 1 = k= ) m,\"/l_;" with m an integer and

HC Loh ai{1Xaio
Definition of b :b; = 27raﬁl.(aa2xa~3).
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Reciprocal space

@ Make our problem easier
@ Periodic potential

@ Hamiltonian is bloc diagonal for each point k
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Slater Koster parameter - Details

We use, spherical coordinate and by using usual rotation matrices around y
and z axis we have :

In . m
V1-—n? }fnz
R(l, m, n) = mn

V1—n? V1—n? m
—v1—n? 0 n

with [ = % m:{and n==2

Example (r)f simplification :
< xlHx>~< Vx>
=< RuX 4 Ri2y + Ri3Z|V|RuiX + Rizy + RizZ >
= RE1ppm + Rppm + Rizppo
= (Ri1 + Ri2)pp + Risppo
= (1— P)ppr + Pppo
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Determinant of H - Details

For diamond structure crystals E,, = E,, E, = E,, and V,, = V,,, and from

this point we will drop the subscripts for these crystals. The functions gy, ¢, ¢»»
and g in (6) are given by

g(k) = cosm I; COSJ‘LLCOSR%—?;SIHQI%I—SH]R%SIHJI ’;3, (M
(k) = ﬁcosn%sinn%sinn%+isiun%cosn%cosx%. (8)
ga(k) = —sinn%cosn%sinn%+icosn%sinar-gﬂ cosﬂ%. 9
ga(k) = —sinn%{ sinn% cos 7t %—i— icos::—];l COS:?Z%'SEIE-I;—S, (10)

where k = (2x/a) (ky, ks, k).
For diamond structure crystals, the parameters appearing in (8) are related
to those of Slater and Koster [6] by

By = 8,8 (000) , Ep = L,z (000) ,
V.n = 8,8 (%_}f%) » Vm = 4Ex T (_?—;‘) (11)
sz:‘tEx.y(%“;“‘;T)) sp—4Va:c( *:T‘;‘}
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Determinant of H - Details

TaBLE V. Matrix components of energy for diamond structure.

(s/8) 1= (5/5)n E.,.(000)4-4E,, ,(110) (cos§ cosn-+cosn cosf+cosk cost)
(x/%)n=(x/x)22 E.,:(000)+4E;, .(110) (cos§ cosn+ cost cost) +-4E;, -(011) cosy cost
(5/8)12= (s/5)m* 4E, .(433) (coskE cosdy cosjf —1 sint sindy sindt)

(s/%)1a= — (s/2) * 4E, «(583) (i sindE cosly cosh—cos}E sindy sindt)

(s/8) 1= — (s/x)2* —4E, . (011) sint sinn+44E, -(110) (sinf cosn+sing cos{)

(/%) 12= (/) m* 4E, - (443) (coshE cosly cosdi—i sindé sindy singy)

(&/yhe= (&/5)n*= (v/2)12 4., (143) (i cos}E cos}n singy —sindt sindy coshi)

(x/y) = (x/y)2* —4E,, y(110) sinf sing—4ili,, ,(011) (sink cos{—siny cos{)

Figure 16: Interaction element of the Hamiltonian’s determinant
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DOS - Details

As in the free-electron case, the density of states for the energy levels E,, between
E and E+dE for the band n is given by the volume of k-space primitive cell with

E<E <FE+dE divided by the volume (21)%/V per allowed wave vector.

, l. E<E,<E+dE
spins 5 L at |
mgfﬂ klU, otherwise J

v 2x) 1V
Density per unit velume (27) Energy
E+dE
dE = |VEnk dk,  and d3k =d§ . dkL
The density of states is therefore given by: Energy E

1 ds dk
J

F)= (2.11) -
gn( ) 4)1_3 SH(E)‘VEnk|

Figure 17: Analytical formula for DOS
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DOS - Details

Find the irreducible k points in the BZ using the point group of the crystal.
7 7

Divide the Brillouin zone into cubes and each cube

=
into 6 tetrahedra. 5
s
I okl
5 LN
N \ g E——)
. 1 (N
-\\ i {/’_
\\ : ‘}{1,
N
_’,’3‘\\ 4 1
1 2

Figure 18: The tetrahedron method

Master 1 Internship May 28, 2024 24 /25



DOS - Details

le<gande>ey  Dr(e) =0

Order the energies &, of the corners and the associated k-points

2. Subtract the energy & at the first corner to get At
3. Get the energy for which you calculate the DOS and remove &, PR
o 2. g<e<ey Dp(e) = L 3e—a)
ind the values of k that give the intersection with the tetrahedron T Ve €eaesien
5. Compute the area of the intersection and divide it py the gradient of ¢
Vr
3. gpcecey Dr(e) = - —— |31 + 6(c — €
2 3 T(€) Vo earem |22 (€ — €2)
_glea t+eaz)(e— €2)?
€32€42
. Vr 3(eq — €)?
4. g3<e<ey DT(e)——u

Ve esr€azeqs

Figure 19: Algorithm Figure 20: Contribution of one
tetrahedron to the DOS®

5Improved tetrahedron method for Brillouin-zone integrations,Peter E. Bléch ,
O.Jepsen and O.K. Andersen, 15 June 1994
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