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II- Physical theory
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Volterra’s equation of the first kind

𝑑 𝑥′

→ 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝐴 𝑥

→ 𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
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Simulated datas
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Simulated datas
Star repartition



II- Physical theory
Goals

Start from integral To density
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II- Physical theory
Goals

Three ways to achieve this 

⋅ Analytically : - Can be difficult or impossible to find

⋅ Numerically : - Lack of precision
- Size sensitve

⋅ Neural network : - No extrapolation

Pros Cons

- Precision

- Tunnable precision

- Can be very specific- Understanding

- Flexibility

- Adaptability
- Speed - One dataset = One network

of interstellar medium
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III- Neural network

OuputInput Hidden layer

Weights Weights
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III- Neural network

OuputInput Hidden layer

Bias 1 Bias 2
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III- Neural network
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𝑥1 → Input data

Epoch step by step



III- Neural network
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𝑤11(𝑡)

(Where 𝑤𝑖𝑗  is the weight that connects the 𝑖𝑡ℎ input of the 𝑗𝑡ℎ neuron) 

Epoch step by step



III- Neural network
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𝑛1 = 𝑠𝑖𝑔 ෍

𝑖

𝑤𝑖1 𝑡 𝑥𝑖 + 𝑏𝑖𝑎𝑠1(𝑡)
Activation function

Epoch step by step



III- Neural network
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𝑤′
11 𝑡

(Where 𝑤′𝑖𝑗  is the weight that connects the 𝑖𝑡ℎ output of the 𝑗𝑡ℎ neuron) 

Epoch step by step



III- Neural network
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𝑦1 = ෍

𝑖

𝑤1𝑖′ 𝑡 × 𝑛𝑖 + 𝑏𝑖𝑎𝑠2 𝑡

→ OUTPUT DATA

Epoch step by step



III- Neural network
Epoch step by step

Weights updating according to loss function

From the output and the target data,
 we can find the loss function
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Output (ideal) :Input :

of interstellar medium



IV- Galaxy mapping problem

Output :Input :
Integrated 

output :
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Learning process



IV- Galaxy mapping problem
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Input :

Learning process

Integrated 
output :



IV- Galaxy mapping problem
Parameters

Loss Function

𝑓𝑚𝑠𝑒 = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡  − 𝑦
2

𝑓log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =
𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦

𝜎

2

Reduction method

𝐹𝑚𝑠𝑒, 𝑠𝑢𝑚 = ෍ 𝑓𝑚𝑠𝑒

𝐹𝑚𝑠𝑒, 𝑚𝑒𝑎𝑛 = ⟨𝑓𝑚𝑠𝑒⟩

𝐹log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, 𝑠𝑢𝑚 = ෍ 𝑓log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝐹log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, 𝑚𝑒𝑎𝑛 = ⟨𝑓log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⟩
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}Tends 
to 0

→ Tends to star number

→ Tends to 1

Several loss functions :



IV- Galaxy mapping problem
Parameters

Loss Function (Mean squared error, Log likelihood)

Reduction method

Epoch number

(mean, sum)

of interstellar medium
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Loss function

Log Likelihood

MSE

Density

V- Results
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Loss function

Dispersion diagram

MSE

Log Likelihood

V- Results
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Loss function

Residue analysis

mse Log likelihood 

V- Results
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Loss function

MSE 
Log Likelihood 

V- Results
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Epoch

Density
8 000 epochs

16 000 epochs

420 000 epochs

V- Results
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Epoch

Extinction
8 000 epochs

16 000 epochs

420 000 epochs

V- Results
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Epoch

Extinction

8 000 epochs 16 000 epochs

V- Results
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Epoch

Extinction

V- Results
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Reduction method

Density

Mean 
& 

mean

Sum 
& 

sum

V- Results
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Reduction method
Sum & sum

Mean & mean

Residue analysis

V- Results

of interstellar medium
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VI- Conclusion

- Neural networks are timeworth way to solve some diffcult problems

- Some parameters are way more influential on the learning way of the NN

- Can be a significative computation time saving tool 

of interstellar medium
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Galaxy mapping using perceptron neural network

VI- Conclusion

- Extand the model to more complex neural networks 

- Add astrophysical constraints

- Generalizee to 3D and Apply the method to real datas from GAÏA telescope

What next ?
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Galaxy mapping using perceptron neural network
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