# FEASIBILITY STUDY OF A NEURAL NETWORK APPROACH FOR MAPPING THE DISTRIBUTION OF INTERSTELLAR MEDIUM

GRESSIER MAXIME LOLIVIER ANTONIN Feasibility study of a neural network approach for mapping the distribution of interstellar medium

- I- INTRODUCTION
- II- PHYSICAL THEORY
- III- NEURAL NETWORK
- IV- GALAXY MAPPING PROBLEM
- V- RESULTS
- VI-CONCLUSION

### I-INTRODUCTION

.



# II- Physical theory

Volterra's equation of the first kind

$$A(x) = \int_0^x d(x')dx'$$

$$A(x) \rightarrow Absorbance$$
  
 $d(x') \rightarrow Extinction density$ 

# II- PHYSICAL THEORY

#### Simulated datas





## II- Physical theory

#### Simulated datas

#### Star repartition



# II- Physical theory

#### GOALS

#### Start from integral



#### To density



# II- PHYSICAL THEORY

#### GOALS

#### Three ways to achieve this

Pros

• ANALYTICALLY :

- Precision - Understanding

• NUMERICALLY : - TUNNABLE PRECISION - FLEXIBILITY

• NEURAL NETWORK : - ADAPTABILITY

- Speed

Cons

- Can be difficult or impossible to find
   Can be very specific
- Lack of precision
- Size sensitve

- NO EXTRAPOLATION

- One dataset = One network





EPOCH STEP BY STEP

# $x_1 \rightarrow \text{INPUT DATA}$

10

EPOCH STEP BY STEP



(Where  $w_{ij}$  is the weight that connects the  $i^{th}$  input of the  $j^{th}$  neuron)





EPOCH STEP BY STEP

 $w'_{11}(t)$ 

(Where  $w'_{ij}$  is the weight that connects the  $i^{th}$  output of the  $j^{th}$  neuron)

#### EPOCH STEP BY STEP

$$y_{1} = \sum_{i} w_{1i}'(t) \times n_{i} + bias_{2}(t)$$
$$\rightarrow \text{OUTPUT DATA}$$

EPOCH STEP BY STEP

FROM THE OUTPUT AND THE TARGET DATA, WE CAN FIND THE LOSS FUNCTION

#### WEIGHTS UPDATING ACCORDING TO LOSS FUNCTION



# INPUT :



### OUTPUT (IDEAL) :



Learning process



LEARNING PROCESS



#### INPUT :

### INTEGRATED OUTPUT :



PARAMETERS

### Loss Function

Several loss functions :

$$f_{mse} = \left(y_{target} - y\right)^2$$

$$f_{\log likelihood} = \left(\frac{y_{target} - y}{\sigma}\right)^2$$

#### **REDUCTION METHOD**

$$F_{mse, sum} = \sum f_{mse}$$
  
$$F_{mse, mean} = \langle f_{mse} \rangle$$
  
$$TENDS TO 0$$

$$F_{\log likelihood, sum} = \sum f_{\log likelihood}$$
  

$$\rightarrow \text{TENDS TO STAR NUMBER}$$

$$F_{\log likelihood, mean} = \langle f_{\log likelihood} \rangle$$
$$\rightarrow \text{TENDS TO 1}$$

Parameters

LOSS FUNCTION (MEAN SQUARED ERROR, LOG LIKELIHOOD)

REDUCTION METHOD (MEAN, SUM)

**EPOCH NUMBER** 

#### Loss function

#### Density





#### Log Likelihood

#### Loss function

#### DISPERSION DIAGRAM





#### 21

#### Loss function

#### Residue analysis

Difference between True and Network density vs Network density



Difference between True and Network density vs Network density



True density ( $mag. kpc^{-1}$ )







#### 8 000 EPOCHS

16 000 EPOCHS

420 000 EPOCHS

#### Epoch





#### 8 000 EPOCHS

16 000 EPOCHS

420 000 EPOCHS

#### Epoch

#### Extinction



8 000 EPOCHS



16 000 EPOCHS

#### Epoch

#### Extinction



### V- RESULTS

Reduction method

Density





#### **REDUCTION METHOD**

Residue analysis

Difference between True and Network density vs Network density



Difference between True and Network density vs Network density



### VI- CONCLUSION

- NEURAL NETWORKS ARE TIMEWORTH WAY TO SOLVE SOME DIFFCULT PROBLEMS

#### - Some parameters are way more influential on the learning way of the NN

- Can be a significative computation time saving tool



WHAT NEXT?

#### - EXTAND THE MODEL TO MORE COMPLEX NEURAL NETWORKS

- ADD ASTROPHYSICAL CONSTRAINTS

- Generalizee to 3D and Apply the method to real datas from GAÏA telescope

### BIBLIOGRPAHY

- S. Lloyd, R. A. Irani, M. Ahmadi, 2020, *Using Neural Networks for Fast Numerical Integration and Optimization*
- Thanks to A. Siebert for the code

# Mean & sum

#### Training and Validation Loss





https://miro.medium.com/v2/resize:fit:563/1\*4\_BDTvgB6WoYVXyxO8lDGA.png

$$\hat{I}(f) = b^{(2)}(\beta_1 - \alpha_1) + \sum_{j=1}^k w_j^{(2)} \left[ (\beta_1 - \alpha_1) + \frac{\Phi_j}{w_{1j}^{(1)}} \right]$$

$$\Phi_{j} = Li_{1} \left[ -e^{-b_{j}^{(1)} - w_{1j}^{(1)} * \alpha_{1}} \right] - Li_{1} \left[ -e^{-b_{j}^{(1)} - w_{1j}^{(1)} * \beta_{1}} \right]$$
$$Li_{1}(z) = \sum_{k=1}^{\infty} \frac{z^{k}}{k}$$