Results 000

Understanding Stellar Associations and Clusters with Constrained Theoretical Models

Yaël Moussouni

University of Strasbourg, Faculty of Physics et Engineering Internship supervised by C. M. Boily and P. Guillout at the Observatory of Strasbourg

Wednesday 29th May, 2024

Yaël Moussouni

Understanding Stellar Associations and Clusters

Introduction and Contents

- Study star clusters with theory, simulations and observations
- Internship in pair with Simon Perrier
- **1** Star Clusters: Definition, Classification and Observation
- 2 Methods
- 3 Results
- 4 Conclusion and Discussion

Results 000 $_{\rm O}^{\rm Conclusion}$

What is a Star Cluster?

Figure 1: M 11, an open cluster.

Figure 2: M 3, a globular cluster.

Result: 000 Conclusion O

Observation of a Star Cluster: Observation Platform

Figure 3: The 2T36 at the Observatory of Strasbourg.

- Two telescopes:
 - $\rightarrow~$ Photometry and imaging
 - $\rightarrow\,$ Spectroscopy and guiding
- Schmidt-Cassegrain
- Aperture: 36 cm
- Focal length: 391 cm
- Filter wheel
 (B, V, R, Ic, Ha, Hβ, OIII)

Result: 000 Conclusion O

Observation of a Star Cluster: Observation Platform

Figure 3: The 2T36 at the Observatory of Strasbourg.

- Two telescopes:
 - $\rightarrow~{\rm Photometry}$ and imaging
 - $\rightarrow\,$ Spectroscopy and guiding
- Schmidt-Cassegrain
- Aperture: 36 cm
- Focal length: 391 cm
- Filter wheel
 (B, V, R, Ic, Ha, Hβ, OIII)

 $\substack{\text{Methods}\\ \bullet 00000000}$

Results 000

Methods: Clusters in Archives

Figure 4: The three clusters studied during this internship with three filters: B (\sim 420 nm), V (\sim 530 nm) and R (\sim 600 nm).

Star Clusters	Methods	Results	
00	0●0000000	000	

Star Clusters	Methods	Results	
00	0●0000000	000	

Astrometric Calibration: astrometry.net (Lang et al., 2010)

Star Clusters	Methods	Results	
00	0●0000000	000	

Astrometric Calibration: astrometry.net (Lang et al., 2010)

Source-Extractor: SExtractor (Bertin & Arnouts, 1996)

Star Clusters	Methods	Results	
00	0●0000000	000	

- Astrometric Calibration: astrometry.net (Lang et al., 2010)
- Source-Extractor: SExtractor (Bertin & Arnouts, 1996)
- Photometric Calibration: Simbad x-match (Wenger et al., 2000)

Star Clusters	Methods	Results	
00	00000000	000	

- Astrometric Calibration: astrometry.net (Lang et al., 2010)
- Source-Extractor: SExtractor (Bertin & Arnouts, 1996)
- Photometric Calibration: Simbad x-match (Wenger et al., 2000)
- Filtering: Gaia x-match (Gaia Collaboration et al., 2016, 2023)

Resul 000

Methods: Hertzsprung–Russell Diagram

• For each star: magnitude in B-band, V-band and R-band

Resul 000

Methods: Hertzsprung–Russell Diagram

- For each star: magnitude in B-band, V-band and R-band
- Hertzsprung–Russell diagram:

Resu 000

Methods: Hertzsprung–Russell Diagram

- For each star: magnitude in B-band, V-band and R-band
- Hertzsprung–Russell diagram:
 - $\rightarrow\,$ Observer: color B-V vs. magnitude V
 - $\rightarrow~$ Theorist: temperature T vs. luminosity L

Figure 6: Color-Magnitude Diagram or Hertzsprung–Russell Diagram.

Resu 000

Methods: Hertzsprung–Russell Diagram

- For each star: magnitude in B-band, V-band and R-band
- Hertzsprung–Russell diagram:
 - $\rightarrow\,$ Observer: color B-V vs. magnitude V
 - $\rightarrow\,$ Theorist: temperature T vs. luminosity L
- How can observers and theorists understand each other?

Figure 6: Color-Magnitude Diagram or Hertzsprung–Russell Diagram.

Resu 000

Methods: Hertzsprung–Russell Diagram

- For each star: magnitude in B-band, V-band and R-band
- Hertzsprung–Russell diagram:
 - $\rightarrow\,$ Observer: color B-V vs. magnitude V
 - $\rightarrow\,$ Theorist: temperature T vs. luminosity L
- How can observers and theorists understand each other?
 - $\rightarrow\,$ Stellar atmospheric simulations: ATLAS9 (Castelli &Kurucz, 2003)
 - \rightarrow Interpolation: YBC tables (Chen et al., 2019)

Figure 6: Color-Magnitude Diagram or Hertzsprung–Russell Diagram.

Result: 000 $_{\rm O}^{\rm Conclusion}$

Methods: Hertzsprung–Russell Diagram Branches

Figure 7: Main branches of a Hertzsprung-Russell diagram.

Result 000 Conclusion O

Methods: Hertzsprung–Russell Diagram Branches

Figure 7: Main branches of a Hertzsprung-Russell diagram.

Result 000 $_{\rm O}^{\rm Conclusion}$

Methods: Hertzsprung–Russell Diagram Branches

Figure 7: Main branches of a Hertzsprung–Russell diagram.

Result 000 $_{\rm O}^{\rm Conclusion}$

Methods: Hertzsprung–Russell Diagram Branches

Figure 7: Main branches of a Hertzsprung–Russell diagram.

Result 000

Methods: Main Sequence Fitting

Figure 8: Fitting the main sequence should be easy, right?

Result: 000

Methods: Main Sequence Fitting

Figure 8: Fitting the main sequence should be easy, right?

9

Result: 000

Methods: Main Sequence Fitting

Figure 8: Fitting the main sequence should be easy, right?

Results 000 $_{\rm O}^{\rm Conclusion}$

Methods: Main Sequence Fitting

Yes...

Yaël Moussouni Understanding Stellar Associations and Clusters Unistra, P&E and ObAS

Results 000 $_{\rm O}^{\rm Conclusion}$

Methods: Main Sequence Fitting

Yes... However...

Yaël Moussouni Understanding Stellar Associations and Clusters Unistra, P&E and ObAS

Result 000

Methods: Extinction and Reddening

• Only two parameters? "There is another!"¹

¹ Master Yoda, Star Wars: Episode V (1980).

Result 000

Methods: Extinction and Reddening

- Only two parameters? "There is another!"¹
- Extinction from the interstellar medium:
 - \rightarrow Reduces the luminosity (*i.e.* increases the V magnitude)
 - \rightarrow Reddening: higher absorption in blue (*i.e.* increases the B V color)
- "Degeneracy" between extinction, age and distance!

$$(B - V)_{\rm cor} = (B - V)_{\rm obs} - E(B - V)$$
$$V_{\rm cor} = V_{\rm obs} - A(V)$$

¹ Master Yoda, Star Wars: Episode V (1980).

Resul 000

Methods: Extinction and Reddening

- Only two parameters? "There is another!"¹
- Extinction from the interstellar medium:
 - \rightarrow Reduces the luminosity (*i.e.* increases the V magnitude)
 - \rightarrow Reddening: higher absorption in blue (*i.e.* increases the B V color)
- "Degeneracy" between extinction, age and distance!
- Extinction can be computed:
 - \rightarrow 3D dust map Bayestar (Green et al., 2019)
 - \rightarrow Implemented in the dustmap python package (Green, 2018)

$$(B - V)_{\rm cor} = (B - V)_{\rm obs} - E(B - V)$$
$$V_{\rm cor} = V_{\rm obs} - A(V)$$

 $^{\scriptscriptstyle 1}$ Master Yoda, Star Wars: Episode V (1980).

Results 000 Conclusion O

Methods: Extinction and Reddening

But...

Yaël Moussouni Understanding Stellar Associations and Clusters Unistra, P&E and ObAS

Results 000

Methods: Extinction and Reddening

- Dusts are mainly around the cluster
- Not so good distance estimation \Rightarrow huge extinction variations

Result: 000

Methods: Extinction and Reddening

- Dusts are mainly around the cluster
- Not so good distance estimation \Rightarrow huge extinction variations
- Solutions:
 - $\rightarrow~$ Using a literature distance to estimate the age
 - $\rightarrow~$ Using a literature age to estimate the distance
 - $\rightarrow~$ Extinction is an adjusting parameter in both cases

Results: Age and Distance of M 3, M 11 and M 37

Figure 9: Best fit for M 3.

Results:

- \blacksquare Age: $10\pm5~{\rm Gyr}$
- \blacksquare Dist.: $2.6\pm1.3~{\rm kpc}$
- Ext.: $\leq 0.01 \text{ mag}$

Literature¹:

- Age: 11.39 Gyr
- Dist.: 10.4 kpc
- Ext.: (negligible)
 - ¹ Forbes &Bridges (2010); Paust et al. (2010)

Results: Age and Distance of M 3, M 11 and M 37

Figure 10: Best fit for M 11.

Results:

- \blacksquare Age: $300\pm256~{\rm Myr}$
- \blacksquare Dist.: $1.4\pm0.2~{\rm kpc}$
- **Ext.**: $0.49 \pm 0.05 \text{ mag}$

Literature²:

- Age: 282 ± 49 Myr
- **Dist.:** 1.8 ± 0.3 kpc
- Ext.: 0.47 ± 0.03 mag

² Perren et al. (2015)

Results: Age and Distance of M 3, M 11 and M 37

Figure 11: Best fit for M 37.

Results:

- \blacksquare Age: $450\pm150~{\rm Myr}$
- \blacksquare Dist.: $1.1\pm0.3~{\rm kpc}$
- Ext.: $0.42 \pm 0.02 \text{ mag}$

Literature³:

- Age: 485 ± 28 Myr
- \blacksquare Dist.: $1.49\pm0.12~{\rm kpc}$
- **Ext.:** 0.26 ± 0.04 mag

³ Hartman et al. (2008)

Star Clusters	Methods	Results	Conclusion
00	000000000	000	

Conclusion and Discussion

Age and distance of M 11 and M 37 are in agreement with literature

Conclusion and Discussion

- Age and distance of M 11 and M 37 are in agreement with literature
- Estimated extinction value does not always match reference uncertainty range
Results 000

Conclusion and Discussion

- Age and distance of M 11 and M 37 are in agreement with literature
- Estimated extinction value does not always match reference uncertainty range
- M 3 (and other globular clusters) distance is out of bound:
 - \rightarrow Low quality data (not so many images)
 - $\rightarrow~{\rm Further}$ away $\Rightarrow~{\rm Magnitude}$ near detection limits
 - $\rightarrow\,$ Stars are not well resolved in globular cluster core
 - $\rightarrow\,$ X-match can deal with ambiguity due to the high stellar density

Results 000

Conclusion and Discussion

- Age and distance of M 11 and M 37 are in agreement with literature
- Estimated extinction value does not always match reference uncertainty range
- M 3 (and other globular clusters) distance is out of bound:
 - \rightarrow Low quality data (not so many images)
 - $\rightarrow~{\rm Further}$ away $\Rightarrow~{\rm Magnitude}$ near detection limits
 - $\rightarrow\,$ Stars are not well resolved in globular cluster core
 - $\rightarrow\,$ X-match can deal with ambiguity due to the high stellar density
- Application: This study of clusters combined with models of X-ray emission ⇒ Synthetic X-ray luminosity functions

References and Bibliography

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393, doi: 10.1051/aas:1996164

- Castelli, F., & Kurucz, R. L. 2003, in Modelling of Stellar Atmospheres, ed. N. Piskunov, W. W. Weiss, & D. F. Gray, Vol. 210, A20, doi: 10.48550/arXiv.astro-ph/0405087
- Chen, Y., Girardi, L., Fu, X., et al. 2019, A&A, 632, A105, doi: 10.1051/0004-6361/201936612
- Forbes, D. A., & Bridges, T. 2010, MNRAS, 404, 1203, doi: 10.1111/j.1365-2966.2010.16373.x
- Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1, doi: 10.1051/0004-6361/201629272
- Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1, doi: 10.1051/0004-6361/202243940
- Green, G. 2018, The Journal of Open Source Software, 3, 695, doi: 10.21105/joss.00695
- Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S., & Finkbeiner, D. 2019, ApJ, 887, 93, doi: 10.3847/1538-4357/ab5362
- Hartman, J. D., Gaudi, B. S., Holman, M. J., et al. 2008, ApJ, 675, 1233, doi: 10.1086/527465
- Jänes, J., Pelupessy, I., & Portegies Zwart, S. 2014, A&A, 570, A20, doi: 10.1051/0004-6361/201423831
- Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, AJ, 139, 1782, doi: 10.1088/0004-6256/139/5/1782
- Paust, N. E. Q., Reid, I. N., Piotto, G., et al. 2010, AJ, 139, 476, doi: 10.1088/0004-6256/139/2/476
- Pelupessy, F. I., Jänes, J., & Portegies Zwart, S. 2012, New A, 17, 711, doi: 10.1016/j.newast.2012.05.009
- Pelupessy, F. I., van Elteren, A., de Vries, N., et al. 2013, A&A, 557, A84, doi: 10.1051/0004-6361/201321252
- Perren, G. I., Vázquez, R. A., & Piatti, A. E. 2015, A&A, 576, A6, doi: 10.1051/0004-6361/201424946
- Portegies Zwart, S., & McMillan, S. 2018, Astrophysical Recipes; The art of AMUSE (IOP Publishing), doi: 10.1088/978-0-7503-1320-9
- Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., & de Vries, N. 2013, Computer Physics Communications, 184, 456, doi: 10.1016/j.cpc.2012.09.024

Portegies Zwart, S., McMillan, S., Harfst, S., et al. 2009, New A, 14, 369, doi: 10.1016/j.newast.2008.10.006

Portegies Zwart, S. F., & Verbunt, F. 1996, A&A, 309, 179

Toonen, S., Nelemans, G., & Portegies Zwart, S. 2012, A&A, 546, A70, doi: 10.1051/0004-6361/201218966 Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9, doi: 10.1051/aas:2000332

Figures and Credits

- Fig. 1. 2T36 Archive, 2023, M 11 (modified).
- Fig. 2. 2T36 Archive, 2023, M 3 (modified).
- Fig. 3. Own work, 2024.
- Fig. 4. 2T36 Archive, 2023, M 3, M 11 and M 37 (modified).
- Fig. 5. Own work, 2024.
- Fig. 6. Own work, 2024.
- Fig. 7. Own work, 2024.
- Fig. 8. Own work, 2024.
- Fig. 9. Own work, 2024.
- Fig. 10. Own work, 2024.
- Fig. 11. Own work, 2024.

Acknowledgements / Remerciements

Merci à Christian M. Boily et Patrick Guillout d'avoir supervisé ce stage ainsi qu'à Simon Perrier pour sa participation, Lucile Rosoli et Frédérick Alland pour avoir ajusté des courbes à la main et enfin à Fabien Castillo pour son fichier de configuration SExtractor et sa compétence à différencier un \log_{10} d'un ln sur une courbe en moins de 3 s.

Yaël Moussouni

Formation of Star Clusters

Figure 12: Formation of a star cluster.

■ Jeans length:

$$L_{\rm J} = \left(\frac{3\pi}{32}\frac{\sigma^2}{G\rho}\right)^{1/2}$$

where σ is the speed dispersion and ρ the density.

Formation of Star Clusters

Figure 12: Formation of a star cluster.

■ Jeans length:

$$L_{\rm J} = \left(\frac{3\pi}{32}\frac{\sigma^2}{G\rho}\right)^{1/2}$$

where σ is the speed dispersion and ρ the density.

Formation of Star Clusters

Figure 12: Formation of a star cluster.

■ Jeans length:

$$L_{\rm J} = \left(\frac{3\pi}{32}\frac{\sigma^2}{G\rho}\right)^{1/2}$$

where σ is the speed dispersion and ρ the density.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: N-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: *N*-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster

Dynamic evolution

Figure 13: N-body problem.

Figure 14: Stellar evolution problem.

Simulation of a Star Cluster: Workbench

■ Cluster Orbital SysteM Integration Code: COSMIC

Figure 15: Principle diagram of the code.

- ¹ Portegies Zwart et al. (2009, 2013); Portegies Zwart &McMillan (2018); Pelupessy et al. (2013)
- ² Pelupessy et al. (2012); Jänes et al. (2014); Portegies Zwart & Verbunt (1996); Toonen et al. (2012)

Simulation of a Star Cluster: Workbench

- Cluster Orbital SysteM Integration Code: COSMIC
- Astrophysical MUltipurpose Software Environment: AMUSE¹

Figure 15: Principle diagram of the code.

- ¹ Portegies Zwart et al. (2009, 2013); Portegies Zwart &McMillan (2018); Pelupessy et al. (2013)
- ² Pelupessy et al. (2012); Jänes et al. (2014); Portegies Zwart & Verbunt (1996); Toonen et al. (2012)

Simulation of a Star Cluster: Workbench

- Cluster Orbital SysteM Integration Code: COSMIC
- Astrophysical MUltipurpose Software Environment: AMUSE¹

Figure 15: Principle diagram of the code.

- ¹ Portegies Zwart et al. (2009, 2013); Portegies Zwart & McMillan (2018); Pelupessy et al. (2013)
- ² Pelupessy et al. (2012); Jänes et al. (2014); Portegies Zwart & Verbunt (1996); Toonen et al. (2012)

Figure 16: Simulation example with the COSMIC code.

Figure 16: Simulation example with the COSMIC code.

Initial Conditions

■ Salpeter's law:

$$\frac{\mathrm{d}N}{\mathrm{d}m} = m^{-2.35}$$

■ Plummer's law:

$$\rho \propto \left(1 + \frac{r}{r_{\rm c}}\right)^{-5/2}$$

■ King's model:

$$\rho \propto \left\{ \left[1 + \left(\frac{r}{r_{\rm c}}\right)^2 \right]^{-1/2} - \left[1 + \left(\frac{r_{\rm t}}{r_{\rm c}}\right)^2 \right]^{-1/2} \right\}^2$$

 $\mathbf{21}$

Salpeter's model and King's law

Figure 17: Comparison between the Salpeter's model and the King's law.

Relations

■ Radius-Mass-Luminosity:

$$\frac{R}{R_{\odot}} \sim \left(\frac{M}{M_{\odot}}\right)^{1/3} \quad ; \quad \frac{L}{L_{\odot}} \sim \left(\frac{M}{M_{\odot}}\right)^{3.4t}$$

Magnitude:

$$m_i - m_{i,\text{ref}} = -2.5 \log_{10} \left(\frac{f_i}{f_{i,\text{ref}}} \right) \quad ; \quad m_i - M_i = 5 \log_{10} \left(\frac{d}{d_{\text{ref}}} \right)$$
$$M_{\text{bol}} = M_i + \text{BC}_i = M_{\text{bol},\odot} - 2.5 \log_{10} \left(\frac{L}{L_{\odot}} \right)$$

• Extinction:

$$(M_i - M_j)_{\text{cor}} = (M_i - M_j)_{\text{obs}} - E(M_i - M_j) \quad ; \quad M_{i,\text{cor}} = M_{i,\text{obs}} - A_i$$
$$R = \frac{A_i}{E(M_i - M_j)} = 3.1 \text{ (in the Milky Way)}$$

Yaël Moussouni

Understanding Stellar Associations and Clusters

23

Bessel B, V and R Filters

Figure 18: Bessel B, V and R filters.

List of Archive Observations

- NGC 5272 M 3 (low quality, framing)
- NGC 6705 M 11 (high FWHM)
- NGC 6205 M 13 (bad quality)
- NGC 2099 M 37
- NGC 5024 M 53 (R magnitude calibration issue)
- NGC 6779 M 56 (R magnitude calibration issue)
- \blacksquare NGC 6341 M 92
- NGC 5466 (R magnitude calibration issue)
- NGC 6366 (R magnitude calibration issue)
- NGC 6633
- NGC 6939 (source extraction issue)

Observation of a Star Cluster: Data Reduction

Raw images:

- Background noise (camera thermal noise, cosmic rays,...)
- Optical defects (dust, vignetting, ...)
- Signal (the image we want)

26

Observation of a Star Cluster: Data Reduction

Raw images:

- Background noise (camera thermal noise, cosmic rays,...)
- Optical defects (dust, vignetting, ...)
- Signal (the image we want)

Solutions:

 \blacksquare Calibration with darks and flats

$$Signal = \frac{Raw - Dark}{Flat}$$

Observation of a Star Cluster: Data Reduction

Raw images:

- Background noise (camera thermal noise, cosmic rays,...)
- Optical defects (dust, vignetting, ...)
- Signal (the image we want)

Solutions:

- \blacksquare Calibration with darks and flats
- Multiple images aligned and stacked together

$$\text{Signal} = \sum \frac{\text{Raw} - \text{Dark}}{\text{Flat}}$$

Calibration of M 3

Figure 19: Calibration of M 3.

Calibration of M 3

Figure 19: Calibration of M 3.

Calibration of M 3

Figure 19: Calibration of M 3.

Figure 20: Calibration of M 11.

Figure 20: Calibration of M 11.

Figure 20: Calibration of M 11.

Figure 21: Calibration of M 37.

Figure 21: Calibration of M 37.

Figure 21: Calibration of M 37.

M 3 Extinction

Figure 22: Fitted Extinction for M 3 and Bayestar values.

M 11 Extinction

Figure 23: Fitted Extinction for M 11 and Bayestar values.

M 37 Extinction

Figure 24: Fitted Extinction for M 37 and Bayestar values.