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The electronic structure problem
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Position of the problem
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The CASSCF method - variational ansatz

Complete Active Space Self-Consistent Field
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The CASSCF method - Lagrangian

Complete Active Space Self-Consistent Field
Ee, k) = (U(c, )| H]¥(c, K))
m we compute the Gradient and Hessian of this Lagrangian

m we find the values (c, k) that minimize E

+ Complete Active Space: we truncate the Hilbert space
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The CASSCF method - Hessian and Gradient
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Typical results
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Developing a new method for excited state calculations
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The idea behind OCOO

How do we find the first excited state?
m we find the ground state )°

B we minimize the energy with an additional constraint:
orthogonality!

Lc,k) = (V(e, k)| H|¥(c, k) + Ao| (V0| W(c, k)|

and then we find the second excited state, the third, and so on...
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General form for the OCOQ Lagrangian

Llem) = (e, )| HIW(e k) + 3 Aal(wd (e, w))
A=0
n—1
— (e A R)+ 3 Aa (Y(e, m)TA (e, K))
A=0
with IT4 = [ 4|
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Overlap Hessian and Gradient
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The Mystery of the Lagrange Multipliers

H =" Ea|p* Yy
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Annex |

[¥) = ¥(0,0)) = ZC’ff i)
(the reference state we want to c_)ptimize)
=1 - o)yl (7

&) =il )
K= Z KPQEA’[PQ] 9)
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é = Crapg = G1 0] _Garige = €1 = él (11)
~pqrs — ~TSpq po T ST GO qpsr srqp

Faculty of Physics & Engineering, University of Strasbourg

onstrained Orbital Optimization and the Electronic Structure 15



“rff;"” = (W] Epgltt) = 7" (18)
TUt, = (Wlépmralt) = T (19)

pgrs apsr

Hence, we have the following expressions for the orbital
Gradient and Hessian:

Gl =2F, (20)
Hyoo = 2higiisagity = OtstiaFolie] + Oalts Friipl + 2Yipalirs]
(21)

with:

Fon Z hn,q"r’mq + Zgnq' 5 rn,qT s (22)

qrs

qu'r‘s = Z (gqrnnsr:j::)(.,.”) + gq.srrm.r;!'fr}wz) (23)

™mmn

where (hpq)pg and (gpgrs)pgrs are the molecular one-
and two-electron integrals.
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Annex Il

Af;}q g., = < | pg > (24)
() =
Fg;-?n _ I*?;"an 0o _ <1'bl|épqr,g- UU> N
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-1

£=—-(HF) GF (28)
with:
¢ = (g, (29)
H(:(J H(:(J
HE = Hee Hee (30)
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Annex V

2-electron excitation operators with at least one virtual
index are all zero. 2-electron excitation operators with-
out virtual indices but with at least one inactive index

can be computed by using:

Epars = EpgEre — 000 B (46)

“pqrs bq

together with Eq. (44).
Then the RDMs take the form:

Vg = 20iq (47)
Fiy S 25.&57;_;.;- o 61(1’)’[;5 (48)

pqis

All RDM elements involving a virtual index are zero.
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Annex VI

Then, the total Gradient and Hessian consist in a sum:

n—1

G =GP+ ) MGH (62)
A=0
n—1

H' = H” + ) )\ ,H* (63)
A=0

and the optimized parameters are:

E — 7(Htot)*1Gtot (64)
The various components of the Gradients and Hessians

can be computed through:
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Annex VII

Loris T

Imposing A4 = —E4 appears as a way to eliminate
the energies we already know in the Hamiltonian, creat-
ing a new system in which these known states are elim-
inated. Then, the Lagrangian is nothing but the expec-
tation value of the reduced Hamiltonian:

H, =Y Eall* (73)
A=n

whose ground state is now |¢)™).

Rigorously, writing |U(€)) =3 ka |@§A>:

L&) = {(W(&)|H, | (£)) (74)
=Y Balkal’ 2 E. > |kal* 2 B, (75)
A=n A=n

because E,, < 0and 0 <> 5 |1cA|2 < 1. The equal-
ity case happens when |¥(£)) = [¢)™).

This adapted version of Ritz" theorem shows that
(Aa)a = —(Ea)a correctly solves the variational prob-
lem, and thus is a correct choice of Lagrange multipliers
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