

Study of polymer crystals under deformation via MD simulation

- **An internship chosen and practiced by:** Aaron WANDHAMMER & Asma SOUFI
- **Under the supervision of:** DR Hendrik MEYER

Study of polymer crystals under deformation via MD simulation

- **An internship chosen and practiced by:** Aaron WANDHAMMER & Asma SOUFI
- **Under the supervision of:** DR Hendrik MEYER

I n t r o d u c t i o n : what is a polymer and its applications

M e t h o d o l o g y :

1

2

- **1. Defining the model**
- **2. Brief definition of software tools**
- **3. Algorithms for MD simulation**

3 Conclusion / Outlook

R e s u l t s : 1. Melting process 2. Deformation process

2

What is a Polymer

Faculté

Université de Strasbourg

de physique et ingénierie

P&i

METHODOLOGY

Verlet Algorithm : Integration method

The basic idea is to write two third-order Taylor expansions for the positions, one forward and one backward in time :

$$
r(t + \delta t) = r(t) + v(t)\delta t + 1/2 a(t)\delta t^2
$$

$$
r(t - \delta t) = r(t) - v(t)\delta t + 1/2 a(t)\delta t^2
$$

P&i

Faculté

Université de Strasbourg

de physique et ingénierie

And by summing this two equations, we obtain :

$$
r(t+\delta t) = 2r(t) + r(t-\delta t) + a(t)\delta t^2
$$

The Verlet algorithm uses positions and accelerations at time t and the positions from time t-δt to calculate new positions at time t+δt. The Verlet algorithm uses no explicit velocities .

Simulated Thermodynamic properties

For the simulation, we determined the thermodynamic properties, Temperature and Pressure as following:

$$
k_BT=\frac{\langle 2K\rangle}{f}
$$

$$
P = \rho k_B T + \frac{1}{dV} \left\langle \sum_{i < j} f(r_{ij}) \cdot r_{ij} \right\rangle
$$

Nosé Hoover Thermostat/Barostat

8

Charle **SADRON**

> **It is a mechanism for controlling temperature and pressure, ensuring that calculated thermodynamic properties (such as temperature and pressure) are maintained at target values: introduce a new degree of freedom that plays the role of heat bath**

Brief description for used software

LARGE ATOMIC/MOLECULAR MASSIVELY PARALLEL SIMULATOR

Performs molecular dynamics (MD)

9

Charle
ADROI

Large Systems (Atomic/Polyatomic/granular…etc)

Parallel execution for using multiple no of processors

> Use Force Fields to describe interaction between models a di sebuah di sebuah sebuah di seba

Solves the fondamental dynamic formula F=ma

Post Process : Visualization using output data

True Stress : $P_{\rm o}$ $P_{\rm z}$; Response of the system to strain, relative change of internal pressure True Strain : $log(L_z/L_o)$; Relative elongation of the material/box

P& Faculté de physique et ingénierie Université de Strasbourg

RESULTS

Melting point.

N/Volume (L-J units)

 2.5

Semicrystalline system

P&i

Faculté

Lowest density at low Temperature. gradual density decrease at Melting point.

P&i Faculté de physique et ingénierie Université de Strasbourg

Melting Process Analysis: Visualization

Perfect system

Solid state: as initial state, the polymer is in crystalline structure That is hexagonal, where the chains are ordered and Oriented in the direction Z

Phase transition: we can still notice some ordered domains built in 2 columns and that are attached by amorphous domains

Liquid state: we can clearly see that all chains polymers are disordered and oriented to different directions due to high Temperature above the critical point.

13

14

Solid state: as initial state, it looks like a packet of ordered domains with differente orientation direction.

Phase transition: some ordered domains are remained but there's a manifestation of structure instability which mentions amorphous behavior in some region

Liquid state: this state means a lack in crystalline structure, where the chains are arranged randomly and without a predictable,repeating pattern.

15

16

SADRON

4 different types of behavior/regime for all temperature :

- **I. Elastic : For small strain, linear behaviour**
- **Strain-softening : Beyond the elastic regime, depending on the parameters (Temperature, the length of the polymers, …) , the stress is either constant with the strain or decrease with the strain**
- **III. Strain-hardening : Beyond the strain-softening regime, the stress increases with the strain (weak for short chains)**
- **IV. IV. Strain-hardening + oscillations : Apparition of oscillations of increasing amplitudes for high strain, before failure.**

17

Differences in behavior for non

replicated- replicated systems **The non-replicated system presents those oscillations way before the replicated one, with a higher amplitude, and breaks for smaller strain.**

> **This can be explained by the fact that those oscillations appear due to the rearrangement of the polymers inside the box, it is a numerical artefact due to the finite volume of the simulation box:**

> **With the replicated systems, we can consider more polymers inside the box, thus explaining why the oscillations appear later.**

20

Charle SADRON

Perfect Crystal under deformation in different directions

22

Charle SADRON

Two different behavior for the different directions of deformations:

- **In z direction, right after the spike, the stress starts to oscillate, meaning that the polymers rearrange themselves in lamellae, before eventually breaking.**
- **In x direction, after the spike the stress remains approximatively constant for a long period of strain where the polymers rearranges, aligning themselves in this direction. When most polymers are aligned in the z direction, the stress start to oscillate before failure.**

Obtained different Crystallinities with different cooling rates

23

SADRON

volume per monomer (L-J units)

Differences in behavior for different initial configurations at T=0,5

Stress-strain curves for L=100 3.5 $T=0.5$ (LJ), c3 $T=0.5$ (LJ), c₆ T=0.5 (LJ), $c2$ 3 $T = 0.5$ ($\frac{1}{2}$), $\frac{1}{2}$ 8 2.5 2 **I** 1.5 **II** 0.5 0 0.5 1.5 2.5 3 3.5 0 2 4 True Strain (log(Lz/L0), L-J units)

True Stress (P0-Pz, L-J units)

24

Differences in behavior for different chain length at T=0.5

25

SADRON

1. For larger chain length, the 3rd regime (strain-hardening) seems to go to higher strains than for smaller ones.

2. In the strain-softening regime, systems with the smallest chains present a decrease in stress relative to strain, whereas for larger chains, the stress remains somewhat constant.

3. The longer the chains are, the more chance there is that chains becomes entangled at some point, increasing the stress.

4. The larger the chains are, the more the system can sustain strain before failure.

Conformation during deformation

Giration radius Rg and end-to-end distance Re for different chain length at T=0.5 **Bg=6*(Rg²)/L Be=(Re²)/L**

26

What is a Polymer

Ratio $<$ R_e^2 $>$ $/<$ R_g^2 $>$ at T=0.5 $\,$

27

SADRON

(LJ) for different length \int \int \int Small chain \Rightarrow constant ratio (Chains are already stretched in the initial configuration)

> End of deformation \Rightarrow Approximative ratio value ~11. (Perfectly straight polymer has a ratio value of 12)

Larger chain \Rightarrow ratio valu is below value 6. (Which is the reference to Gaussian ideal polymers)

- Identify 4 regimes in the Stress strain curves
- Comparison of Crystalline and semicrystalline Polymers
- Chain length Dependance

- Further studies :
- Quantification of order parameters (Orientational order and structure factor)

Faculté

Université de Strasbourg

de physique et ingénierie

231