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Introduction and motivationI

What is a Giant Unilamellar Vesicle ?
Membrane

SiO2 particles, R = 1 μm

Lipid bilayer

Water and sucrose

Cytoplasm

Organelles

Living cell Vesicle
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Size of cells / vesicles : a few μm
Diagrams are not to scale



Introduction and motivationI

- Creating vesicles encapsulating 
colloidal particles of radius 1 μm

- Studying the physics of the membrane 
when a particle is pulled trough it

- Relevant quantity for these systems : 
surface tension

- Motivation : understanding how cells 
physically work

With Thomas Dartige (M2 Cell Physics) 

Aim of the internship
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Introduction and motivationI

Interactions and deformations of 
vesicle- particles systems 

[1] Fessler F., Sharma V., Muller P., & Stocco A. (2023). Entry of 
Microparticles into Giant Lipid Vesicles by Optical Tweezers. Phys Rev E.

[2] Vutukuri, H. R., Hoore, M., Abaurrea-Velasco, C., van 
Buren, L., Dutto, A., Auth, T., Fedosov, D. A., Gompper, G., 
& Vermant, J. (2020). Active particles induce large shape
deformations in giant lipid vesicles. Nature, 586(7827), 

52–56. 
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These experiments are performed at a low surface 

tension regime (~10−8𝑁 ∙ 𝑚) so that the forces are 

of the order of a pN.
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- Based on protocols found in the literature [2][3]

- Centrifuged water-in-oil emulsion

- Lipids are fluorescently labelled so that we can see the vesicles

- Colloids (R= 1 μm) are visible with white light

Fabrication of GUVsII

Protocol

water in oil  emulsion 

water

SHEAR FORCES

oil

Put above water phase

C
E
N
T
R
I
F
U
G
E

water
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Fabrication of GUVsII

Forces on the vesicle during 
centrifugation

9

Surface tensionCentrifugation force

𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 ≈ 10−8𝑁

𝐹𝐶 =
4

3
𝜋𝑅3 × Δ𝜌 × 𝑎 𝛾 ≈ 10−3N ∙ m−1

𝑅 =  radius 
Δ𝜌 = difference of density 
between oil and water,
𝑎 = acceleration

10−10𝑁 < 𝐹𝐶 < 10−7𝑁



Fabrication of GUVsII

We had to tune every experimental 
conditions :
- Concentration of lipids
- How to prepare emulsion
- How fast should it spin
- How long should we wait between each 

step
…

Challenges
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Fabrication of GUVsII

Challenges : 
Choice of particles concentration
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Those colloidal crystals are observed when particles are adsorbed on a membrane. 
They are a subject of interest for some physicists [4].



Fabrication of GUVsII

Challenges :
Centrifugation force

If the sample is accelerated too much it 
can cause the particles (heavier part of the 
sample) to cross the interface alone.

As they are more accelerated than the 
surrounding water, they escape the vesicle 
and are covered with lipids, therefore visible 
with fluorescent light.
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Fabrication of GUVsII

Challenges :
Centrifugation duration

The time and the force of 
centrifugation are key elements for 
the vesicle to cross the interface. The 
force felt by the vesicle is :

C
E
N
T
R
I
F
U
G
E
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𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑡𝑖𝑜𝑛 =
4

3
𝜋𝑅3 × Δ𝜌 × 𝑎

With 𝑅 the radius, Δ𝜌 the difference of 
density between oil and water, and 𝑎 
the acceleration. It has to overcome 
the surface tension force, which is of 
the order of 10−8𝑁.



Fabrication of GUVsII

Examples of GUVs
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Ideal parameters : centrifugation at 500g (~10−8N) during 30 minutes

colloids
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- An infrared laser creates a trap for the particles. 

- The potential induced by the laser is a 

harmonic potential. The resulting force is :
Ԧ𝐹 = −𝜅( Ԧ𝑥 − Ԧ𝑥0)

- Location of the trap = focal plane = equilibrium 

position

Optical TweezersIII

Optical tweezers
LASER

PARTICLE

Focal plane
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κ



- An infrared laser creates a trap for the particles. 

- The potential induced by the laser is a 

harmonic potential. The resulting force is :
Ԧ𝐹 = −𝜅( Ԧ𝑥 − Ԧ𝑥0)

- Location of the trap = focal plane = equilibrium 

position

Optical TweezersIII

Optical tweezers
LASER

κ
PARTICLE

Focal plane
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Optical TweezersIII

Comparison of the trajectories

Comparison of the 2D trajectories of two particles during 19 seconds.
Those were obtained using a tracking algorithm on videos of the particles.
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When colloids are free, they have a 
pure Brownian motion [6][7]. 
Here, our colloids are in water 
(viscosity 𝜂 ≈ 10−3Pa. s). 
Even though they have a radius of 1 
μm, they have a Brownian motion.

Optical Tweezers

2D Trajectories of several particles 

(19 seconds of motion)

III

Free particles : brownian motion

19

(μm)
(μ

m
)



- MSD = mean squared distance travelled 

by a particle in a time interval.

- Brownian motion [7] :

Optical TweezersIII

Mean Square Displacement (MSD)

𝑥 𝑡 − 𝑥0
2 = 2𝐷𝑡

𝑥0 = initial position of the particle
𝐷 = diffusion coefficient
𝑡 = time

20

(μ
m

²)
0,4295 μm²/s



Optical TweezersIII

Mean Square Displacement (MSD)

𝑘𝐵 = Boltzmann constant
T = temperature
R = radius of the particle

In a fluid, the theoretical value of D reads :

𝐷𝑡ℎ =
𝑘𝐵𝑇

6𝜋𝑅𝜂

𝐷𝑡ℎ ≈ 4,46 × 10−1 𝜇𝑚2/𝑠

𝐷𝑒𝑥𝑝 ≈ (4,30 ± 0,29) × 10−1 𝜇𝑚2/𝑠

𝜂 = viscosity of the fluid
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²)
0,4295 μm²/s



- The more current in the laser, the stronger the 

trap gets;

- The power of the laser and the intensity are 

linearly related; those intensities correspond to a 

0-50 mW range of power

- The maximum power of the laser is about 1W

- The laser beam is not perfectly circular in the 

trapping plane, leading to anisotropic 

trajectories.

Optical TweezersIII

Influence of the laser power
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- Trapped particles MSD is different [6] :

Where 𝜅 is the spring constant, 𝛾 is the 

friction coefficient (𝐷 = 𝑘𝐵𝑇/𝛾).

- Eventually, it reaches a plateau as the 

particle is trapped

- The plateau gives the stiffness 

constant of the trap :

MSD =
2𝑘𝐵𝑇

𝜅
for 𝑡 ≫ 1

Optical TweezersIII

Determination of the spring constant

𝑀𝑆𝐷 =
2𝑘𝐵𝑇

𝜅
1 − exp −𝜅𝑡/𝛾
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(μ
m

²)

Ԧ𝐹 = −𝜅( Ԧ𝑥 − Ԧ𝑥0)



- The spring constant 𝜅 grows 

linearly with intensity or power.

- Calibration of the optical tweezers; 

now, when we use the laser with a 

given intensity, we know how 

strong the trap is.

Optical TweezersIII

Determination of the spring constant
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Ԧ𝐹 = −𝜅( Ԧ𝑥 − Ԧ𝑥0)
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Results & DiscussionIV

GUVs encapsulating particles

26

We trap the particle with optical 
tweezers

We move it towards the 
membrane and we push it

The membrane does not deform. 
The vesicle is moved by the kick 

given by particle.

particle particle particle



Results & DiscussionIV

GUVs are not “floppy” enough

"Floppy" GUV "Stiff" GUV

27

Membrane tension typically < 10−7𝑁/𝑚 Membrane tension typically > 10−7𝑁/𝑚



Results & DiscussionIV

Solution : osmotic pressure ?

WATER

𝛍𝐥𝐞𝐟𝐭 > 𝛍𝐫𝐢𝐠𝐡𝐭

Porous membrane 

Sugar 

If the membrane can let water 
trough, the water will move to 
balance the chemical potential.

𝜇 = chemical potential

28



Results & DiscussionIV

Solution : osmotic pressure ?

Add sugar

𝛍𝐢𝐧 = 𝛍𝐨𝐮𝐭 𝛍𝐢𝐧 > 𝛍𝐨𝐮𝐭 𝛍𝐢𝐧 = 𝛍𝐨𝐮𝐭

Initial state : the membrane 
is too stretched and we 

can’t pull a particle out of it.

The addition of sugar 
outside of the vesicle causes 

the water to go out.

Equilibrium is restored; the 
vesicle contains less water 

and is therefore “floppy”.

Wait
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Results & DiscussionIV

Solution : osmotic pressure ?
OIL

After adding a lot of sugar (+30%) 
and letting it rest all night, we did 
not see any progress

30
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Results & DiscussionIV

And it was already the end…
What we did :

- GUVs with a controlled number of colloids

- Optical tweezers calibration

- Even though there was too much tension, we could move the vesicles with the 

optical tweezers

What’s next :

- Fabrication of low tension vesicles

- Measurement of the physical properties of the membrane (bending modulus, 

tension, …)

- Compare with theoretical models [8][11] and understand shape transition

32
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Results & DiscussionIV

Solution : osmotic pressure ?
OIL

WATER WATER
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- The experimental value found before
is not reliable, because it is the mean
slope over all points. 

- Small time interval : not enough
precision, long time slot between two
frames

- Long time interval : drift, currents, …

- More reliable value if we look at the 
region where D is constant

Optical Tweezers - Brownian motionIII

Mean Square Displacement (MSD)

𝐷𝑒𝑥𝑝 ≈ 4,17 × 10−13 𝑚2/𝑠
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Results & DiscussionIV

Solution : micropipette ?
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