Vibrational Spectroscopy of Trapped and Sympathetically Cooled Molecular Ions

Internship presentation

Amr HUSSEIN

University of Strasbourg Faculty of physics and engineering under the supervision of

JP SOLARO Cyrille

Mai 29, 2024

Amr HUSSEIN

1 Vibrational Spectroscopy

- 2 Sympathetic cooling and Laser-trapping
- **3** Post Hartree-Fock methods: CCSDT
- 4 Atom-light interactions and Einstein coefficients (for cooled atoms)

Vibrational Spectroscopy	Sympathetic cooling and Laser-trapping	Post Hartree-Fock methods: CCSDT	Atom-light interactions and Einstein coefficients (for
••			

Vibrational Spectroscopy

Degrees of freedom

Molecular structures give rise to internal degrees of freedom, e.g For linear molecules there are total 3N degrees of freedom including 3 translational, 2 rotational and (3N-5) vibrational

Figure 1: General scheme of the order of transitions for different classes of degrees of freedom

Vibrational Spectroscopy	Sympathetic cooling and Laser-trapping	Post Hartree-Fock methods: CCSDT	Atom-light interactions and Einstein coefficients (for
	•ooo		

Sympathetic cooling and Laser-trapping

Vibrational Spectroscopy Sympathetic cooling and Laser-trapping Post Hartree-Fock methods: CCSDT Atom-light interactions and Einstein coefficients (for 0000

Quadrupole Ion Traps ("AC" Traps)

Figure 2: Paul Trap

Figure 3: Quadrupole Ion Trap

Figure 4: Saddle Point graph analogy

Sympathetic cooling

How?:

- Coulomb interaction between two species (Coolant ions and target ions)
- Laser cooling to reduce kinetic energy

Why?:

- Particles exchanging energy through Coulomb interactions (Maxwell-Boltzmann distribution $f(v_x) = \sqrt{\frac{m}{2\pi k_B T}} \exp\left(-\frac{mv_s^2}{2k_B T}\right)$) leading to Reducion of Doppler broadening, $\Delta \lambda_D = \lambda_0 \sqrt{\frac{8k_B T \ln 2}{mc^2}}$.
- Reduce perturbations by the field on target ions
- High-resolution spectroscopy

How good?: reaching T $\sim \mu {\it K}$

Vibrational Spectroscopy Sympathetic cooling and Laser-trapping Post Hartree-Fock methods: CCSDT Atom-light interactions and Einstein coefficients (for 0000 0000

Ion Coulomb Crystals

Figure 5: Projection images of two-species ion Coulomb crystals containing 1500 40 Ca + ions (red) and 2000 44 Ca + ions (blue) at different settings of the end-cap potential, U end . The camera exposure time is 100 ms and the trap potentials are U rf = 540 V and (a) U end = 46.1 V, (b) U end = 30.2 V and (c) U end = 13.8 V, respectively.

Amr HUSSEIN

Vibrational Spectroscopy of Trapped and Sympathetically Cooled Molecular Ions

Vibrational Spectroscopy	Sympathetic cooling and Laser-trapping	Post Hartree-Fock methods: CCSDT	Atom-light interactions and Einstein coefficients (fo
		0000	

Post Hartree-Fock methods: CCSDT

Why CCSDT?

The Hartree-Fock mehtod:

- The foundational tool in qunatum and computational chemistry
- But does not account for electrons' correlation energy

Post HF methods:

- CI (Configuration interaction), (CIS, CISD, CISDT)
- CC (Coulpled Cluster)
- DFT (Density Functional Theory)...

CCSDT and its advantages:

- Exponential Ansatz: $|\Psi
 angle=e^{\mathcal{T}}\left|\Phi_{0}
 ight
 angle$
- Singles (*T*₁) :

$$T_1 = \sum_{i,a} t^a_i a^\dagger_a a_i$$

Here, *i* and *j* denote occupied orbitals, *a* and *b* denote virtual orbitals, a_a^{\dagger} and a_i are creation and annihilation operators, and t_i^a are the single excitation amplitudes. Doubles (T_2) :

$$T_2 = \frac{1}{4} \sum_{i,j,a,b} t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$

• Fast convergence.

Lower computatinal cost

11 / 16

Results for the PES (Potential Energy Surfaces) scans for the MgH+ molecule

Figure 6: The electronic singlet potentials of MgH+. Only the electronic ground state X 1 + is considered in the simulation. (b) Rovibrational structure of the electronic ground state X 1 + showing the closed transition of interest |v = 0, J = 1 - |v = 1, J = 0. The decay rate of t = 2 \times 2.50 Hz is the slowest timescale of our experiment and spontaneous emission is negligible. (c) Sublevels of the |v = 0, J = 1 and |v = 1, J = 0 states showing the norm squared of the Clebsch-Gordan coefficients.

Vibrational Spectroscopy	Sympathetic cooling and Laser-trapping	Post Hartree-Fock methods: CCSDT	Atom-light interactions and Einstein coefficients (for
			•000 ⁻

Atom-light interactions and Einstein coefficients (for cooled atoms)

Toy model of 3 level system

Figure 7: Probability evolution of a 3 state system

$$\begin{split} \frac{d}{dt} P_{|g_t\rangle} &= -R_{\mathrm{abs},0} P_{|g_t\rangle} + \left(|\tilde{\xi}|^2 R_{\mathrm{stim},0} + \tilde{D} \Gamma_t \right) \\ \frac{d}{dt} P_{|e_t\rangle} &= - \left(\Gamma_t + R_{\mathrm{stim},0} \right) P_{|e_t\rangle} + |\tilde{\xi}|^2 R_{\mathrm{abs},0} P_{|d_t\rangle} \\ \frac{d}{dt} P_{|\mathrm{aux}\rangle} &= \left[(1 - \tilde{D}) \Gamma_t + \left(1 - |\tilde{\xi}|^2 \right) R_{\mathrm{stim},0} \right] P_{|e_t} \\ &+ \left(1 - |\tilde{\xi}|^2 \right) R_{\mathrm{abs},0} P_{|g_t\rangle}. \end{split}$$

Vibrational Spectroscopy Sympathetic cooling and Laser-trapping Post Hartree-Fock methods: CCSDT Atom-light interactions and Einstein coefficients (for 0000 0000 0000

Einstein A coeft1cients, A_{ij} , are found from the wavefunctions and the permanent dipole moment:

$$A_{ij} = \frac{\omega_{ij}^3 \left| D_{ij} \right|}{3g_i c^3 \epsilon_0 \hbar \pi},$$

where $|D_{ij}|$ is the transition dipole moment between the states and g_i is the degeneracy of state *i*. The corresponding Einstein B coefficients are given by

$$egin{aligned} B_{ij} &= rac{c^3}{4hv_{ij}^3} A_{ij}\ B_{ji} &= rac{g_i}{g_j} B_{ij}, \end{aligned}$$

where $v_{ij} = \omega_{ij}/2\pi$ is the frequency difference between state *i* and state *j*, and $g_i = 2J + 1$ is the degeneracy of the state *i* with rotational quantum number *J*.

Amr HUSSEIN

Vibrational Spectroscopy of Trapped and Sympathetically Cooled Molecular Ions

Vibrational Spectroscopy	Sympathetic cooling and Laser-trapping	Post Hartree-Fock methods: CCSDT	Atom-light interactions and Einstein coefficients (for
			0000

Expectations

Our current findings for the coefficients agree to about 5% to 10% with the litterature

v,	J) _{ini}	$\Delta v =$	0	-	1		2		-3	-4
υ	J	$\Delta J = -1$	1	-1	1	-1	1	-1	1	-1
	0									
	1	0.002								
	2	0.022								
	3	0.078								
0	4	0.191								
	5	0.381								
	6	0.665								
	7	1.062								
	8	1.589								
	0		20.565							
	1	7.886	12.773	0.002						
	2	10.141	10.705	0.019						
	3	11.636	9.490	0.068						
1	4	12.914	8.586	0.167						
	5	14.123	7.843	0.333						
	6	15.323	7.203	0.581						
	7	16.541	6.637	0.927						
	8	17.793	6.129	1.387						

Figure 8: Einstein A coefficient for transitions within the electronical ground state of MgH+

Vibrational Spectroscopy	Sympathetic cooling and Laser-trapping	Post Hartree-Fock methods: CCSDT	Atom-light interactions and Einstein coefficients (for
OO	0000	0000	000●
References I			