Characterising open-charm hadronisation processes with LHCb experiment

Juliette AUTHIER

Supervised by Pr. Émilie MAURICE and Dr. Frédéric FLEURET

24/06/2024

- Open charm mesons: one c (or \bar{c}) with a light quark
- $c\bar{c}$ produced at early times in the collision
- Hadronise into <u>open charm</u> or charmonia

Hadronisation process(es) still not well understood

Fragmentation: a universal process?

• Force field between $q \overline{q}$ pair can be seen as a string

• Potential energy of the string increases linearly with length

- Fragmentation function : probability of forming a given hadron
- Independent of energy and colliding system

Fragmentation: a universal process?

- Charm quark fragmentation function measured by ALICE
- Differences between pp and e⁺e⁻ collisions
- Must be other processes involved

Coalescence

Between quarks produced in the collision

With spectator quark from the beam

Intrinsic charm of the proton $(uudc \bar{c})$

Coalescence

 $\overline{D^0}$ 2000 More hadrons containing valence quarks of the proton p_1 ▶ more $\overline{D^0}(u\overline{c})$ than $D^0(\overline{u}c)$ With spectator quark from Intrinsic charm of the proton the beam $(uudc\bar{c})$

6

D^0 - $\overline{D^0}$ asymmetry

$$\mathcal{A} = \frac{\mathcal{N}(D^0) - \mathcal{N}(\bar{D^0})}{\mathcal{N}(D^0) + \mathcal{N}(\bar{D^0})}$$

- Experimentally: up to -15% and y* dependent
- Pythia: -6% and flat
- Large discrepancy between Pythia and data

LHCb experiment

Fixed-target configuration

LHCb experiment

Fixed-target configuration

Asymmetry coming from sea quarks

LHCb experiment

Fixed-target configuration

Asymmetry should increase at backward rapidity

Objectives

Origin of asymmetry given by Pythia?

1) Produce Pythia simulations of pp collisions at $\sqrt{s}_{NN} = 68.5$ GeV

2) Study $D^0 - \overline{D^0}$ asymmetry as a function of p_T and y^*

3) Predictions for Run3 measurements with LHCb in pH and pHe collisions at $\sqrt{s}_{NN} = 113$ GeV

Charm fragmentation functions

Charm fragmentation functions

 D^0 production

Mothers 14

Objectives

Origin of asymmetry given by Pythia?

1) Produce Pythia simulations of pp collisions at $\sqrt{s}_{NN} = 68.5$ GeV :

2) Study $D^0 - \overline{D^0}$ asymmetry as a function of p_T and y^*

3) Predictions for Run3 measurements with LHCb in pH and pHe collisions at $\sqrt{s}_{NN} = 113$ GeV

p_T distribution

 D^0 - $\overline{D^0}$ asymmetry

Objectives

Origin of asymmetry given by Pythia?

1) Produce Pythia simulations of pp collisions at $\sqrt{s}_{NN} = 68.5$ GeV :

2) Study $D^0 - \overline{D^0}$ asymmetry as a function of p_T and y^*

3) Predictions for Run3 measurements with LHCb in pH and pHe collisions at $\sqrt{s}_{NN} = 113$ GeV

p_T distribution

y distribution

Pythia simulations summary

• ~ 35% of D^0 production

Objectives

Origin of asymmetry given by Pythia?

1) Produce Pythia simulations of *pp* collisions at $\sqrt{s}_{NN} = 68.5$ GeV :

2) Study $D^0 - \overline{D^0}$ asymmetry as a function of p_T and y^*

3) Predictions for Run3 measurements with LHCb in pH and pHe collisions at $\sqrt{s}_{NN} = 113$ GeV

Predictions for LHC Run3

Objective:
$$N(D^0) = 1$$
 million in pH and pHe

From cross-section formula:

$$\sigma_{D^0}^{acc} = \frac{N(D^0)}{A \times \epsilon \times L \times t \times B(D^0 \to K^{\pm}\pi^{\pm})}$$

For pH: $t = 216 \pm 11$ h ~ 9 days of data taking For pHe: $t = 121 \pm 10$ h ~ 5 days of data taking

Conclusion

- $D^0 \overline{D^0}$ asymmetry in Pythia still not fully understood
- Evidence for different behaviors depending on production mechanisms
- Mix of several mechanisms: which ones and in which proportion?
- Still many open questions!

What's next?

- \rightarrow Currently exchanging with one of Pythia's developers
- \rightarrow Compare to *p*He collisions at $\sqrt{s}_{NN} = 68.5$ GeV
- \rightarrow Waiting for new data with more statistics!

Thank you for your attention

p_T distribution

Process	$\langle p_T angle$ [GeV]
$q\bar{q} \rightarrow D^0$	1.58
$q\overline{q} \rightarrow \overline{D^0}$	1.53
$D^* \to D^0$	1.47
$D^* \to \overline{D^0}$	1.47

y distribution

Process	$\langle y^* angle$
$q\bar{q} \rightarrow D^0$	-0.80
$q \overline{q} \rightarrow \overline{D^0}$	-0.83
$D^* \rightarrow D^0$	-0.82
$D^* \to \overline{D^0}$	-0.82

p_T distribution

Process	$\langle p_T angle$ [GeV]
$gg \to D^0$	1.49
$gg \rightarrow \overline{D^0}$	1.49
$qg \rightarrow D^0$	1.33
$qg \rightarrow \overline{D^0}$	1.29

y distribution

Process	$\langle y^* angle$
$gg \rightarrow D^0$	-0.82
$gg \rightarrow \overline{D^0}$	-0.82
$qg \rightarrow D^0$	-0.85
$qg \rightarrow \overline{D^0}$	-0.86

Predictions for LHC Run3

Objective: $N(D^0) = 1$ million

From cross-section formula:

$$\sigma_{D^0}^{acc} = \frac{N(D^0)}{A \times \epsilon \times L \times t \times B(D^0 \to K^{\pm} \pi^{\pm})}$$

Acceptance-efficiency: 2.4%

Instantaneous luminosity (estimations for Run3):

 $L_{pH} = 6 \times 10^{31} \ cm^{-2} \ s^{-1}$ $L_{pHe} = 3 \times 10^{31} \ cm^{-2} \ s^{-1}$ c

Branching fraction to the measured decay product: $B = (3.950 \pm 0.031)\%$

 $\sigma_{D^0}^{acc}(p\text{He}) = 80.8 \pm 2.4 \text{ (stat.)} \pm 6.3 \text{ (sys.)} \mu\text{b/nucleon}$

Conclusion

- What have been done:
- ✓ Simulations of *pp* collisions at $\sqrt{s}_{NN} = 68.5$ GeV with Pythia
- ✓ Reproduce charm quark fragmentation functions measured in e^+e^-
- Study p_T and y^* dependence of $D^0 \overline{D^0}$ asymmetry depending on D^0 and $c\bar{c}$ production mechanisms
- ✓ Predictions of the data taking time to get $1M D^0$ during LHC Run3

What's next?

- \rightarrow Compare to pHe collisions at $\sqrt{s}_{NN} = 68.5$ GeV
- \rightarrow Same study for $D^+ D^-$

Section

Subsection

Section

Subsection