# PEPITES

Measurement of secondary electron emission rates from ultrathin gold foil bombarded by protons at intermediate energies for the development of PEPITES, an ultra-thin beam monitor for hadron therapy.

> Tingzhen Xiao Supervisor: Christophe Thiebaux Co-supervisor: Alexandre Esper

# Context



- Hadron therapy: Cancer treatment with hadron beams at intermediate energy (about 100 MeV).
- **Goal**: Continuous monitoring, minimal beam disturbance.
- **Innovative Monitor**: Ultra-thin, radiationresistant for mid-energy accelerators.

# Principle

- **Signal**: Utilizes Secondary Electron Emission (SEE) for precise beam profiling which proportional to dE/dx of the charged beam particles since it is a **surface phenomenon**.
- **Design**: 50 nm Gold as electrodes, since its high Z(79) produces large number of SEE. Proton beam sensitivity, non-oxidizing.
- **Substrate**: 1.5 µm CP1 (colorless polyimide) membranes. High radiation tolerance.



# **PEPITES Layout**

- **Four Electrodes Design**: Two segmented cathodes, two anodes, 15 mm gap.
- **SEE Collection**: Anodes biased at 100 V.
- **Sensitive areas**: 32 gold strips for cathodes, fully metallized anodes.
- **Mechanically Independent Blocks**: For X and Y beam position and shape measurements..





# My Work—Measure SEE Rate

- **Why?** To calibrate the detector and for further development of PEPITES.
- Calculate with the test beam data from 13 and 14 December 2018 at ARRONAX.
- Electron going the same direction of the beam=**Forward**
- Electron going opposite direction of the beam=Backward
- No measurement available for E>20MeV.
- Rate = Nse/Np



# **Experimental setup for SEE rate measurement**



### **ARRONAX** experimental setup

Charge measurement systems

7



Vacuum chamber



# **Result: Data Taking "History"**



9

#### **Result: Current values of SEE in forward direction at 68 MeV for Proton beam**



#### **Result: Beam's current measurements for different current**

11



### Analysis: SEE(I) Rate Forward vs. Backward



### A different way measure the rates

- Use of ARRONAX charge (Q) measurements system instead of beam stop
  - Avoid « bad » Beam Stop measurement at low current
- We need to transform the measured intensity I\_cathode into a charge Q\_cathode
  - Q = I \* T



### Analysis: SEE(Q) Rate Forward vs. Backward



### **Analysis: SEE(Q) Rate for different Energies**



#### Analysis: SEE(Q) Rate compared with Sternglass calculation



# **Alpha Particles**

10<sup>1</sup>

10<sup>0</sup>

 $10^{-1}$ 

Current (nA) 10-5

10-3

 $10^{-4}$ 

. ₽



2500

10-5 17 Ó 500 1000 1500 2000 2500 Time (s)

### Analysis: SEE(Q) Rate Forward vs. Backward



- Consistency in **R\_SEE** Calculations:
  - Both current (I) and charge (Q) based methods provided consistent R\_SEE values, Charge-based calculation shows reduce error margins.

#### • Linearity

- Secondary electron emission rate does not depend on beam intensities.
- PEPITES could still work with very high beam intensities.
- SE Directional Flow Dependence:
  - For both protons and alpha particles, the R\_SEE in the forward direction was consistently higher than in the backward direction for all energy levels.
- Energy Dependence:
  - As the energy increased, the R\_SEE values for protons decreased.
- Particle Type Differences:
  - Alpha particles exhibited significantly higher R\_SEE values compared to protons at the same energy levels.

# Thank you

#### 19

Conclusion

# BACKUP SLIDES

# **PEPITES Prototype**

**Installation:** ARRONAX, vacuum chamber with a translation system for beam path engagement.

Advantage: Detector is free of mechanical constraint.

**Implementation**: Proven success at ARRONAX, paving the way for long-term applications.



# **Comparing the 2 methods**

Rate SEE Q and I vs Q\_Arronax



### **Analysis : SEE(I) rate for different Energies**



23