### Jet fragmentation and charmonium production at 5.02 Tev

### Paul Ghiringelli

#### 17 June 2024



### Summary

- Introduction and state of art
- 2) Quick overview of the theory regarding J/ $\psi$  production in jets
  - ${\rm J}/\psi$  hadroproduction
  - Non Relativistic Quantum ChromoDynamics (NRQCD)
  - What is a jet ?
  - Plan

Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet

- What is Rivet ?
- Predictions using Pythia 8.1
- Predictions using Pythia 8.3 (Onia Showers)
- Outlook and conclusion
  - Some improvements but still a long way to go
  - Analysing Jet substructure observables
  - Conclusion

### Motivation

- The production mecanisms of quarkonia are not well understood
- Up to now, we thought that  $\mathsf{J}/\psi$  was produced early after hard parton scatterings
- BUT Data analysis regarding J/ $\psi$  in jets  $\longrightarrow$  less isolated than we thought

### In this presentation

- Presentation of the Onia Showers mode implemented in Pythia 8.3
- Results regarding J/ $\psi$  with Pythia 8.3
- First study of jet substructure using Onia Showers !

### Introduction and state of art

### Fragmentation function observable

$$z = rac{
ho_{T,J/\psi}}{
ho_{T,Jet}}, \ z \longrightarrow 1 \ : \ J/\psi$$
 isolated



Fig. 1: From <u>NRQCD in Parton Showers</u>

• • • • • • • •

### Introduction and state of art Pythia 8.1 confronts data from LHCb and CMS



Fig. 2: From Study of  $J/\psi$  production in jets



Fig. 3: From Fragmentation of jets containing a prompt  $J/\psi[...]$ 

### Introduction and state of art

Recents Improvements implemented by Naomi Cooke in Pythia 8.3  $\longrightarrow$  Better agreement with LHCb data



Fig. 4: From NRQCD in Parton Showers

### Introduction and state of art

### ② Quick overview of the theory regarding J/ $\psi$ production in jets

- J/ $\psi$  hadroproduction
- Non Relativistic Quantum ChromoDynamics (NRQCD)
- What is a jet ?
- Plan
- Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet
  - What is Rivet ?
  - Predictions using Pythia 8.1
  - Predictions using Pythia 8.3 (Onia Showers)

### Outlook and conclusion

- Some improvements but still a long way to go
- Analysing Jet substructure observables
- Conclusion

## Quick overview of the theory regarding J/ $\psi$ production in jets J/ $\psi$ hadroproduction

### Prompt J/ $\psi$

 $J/\psi$  coming from the hadronization of a  $c\bar{c}$  pair either directly or via the decay of an excited state (feed-down)

### Non Prompt J/ $\psi$



Fig. 5: A Feynman diagram of a LO contribution to the weak decay of a B hadron into a J/ $\psi$ 

### Can be separeted experimentally because of the macroscopic $c\tau_B$ of Non Prompt

## Quick overview of the theory regarding J/ $\psi$ production in jets Non Relativistic Quantum ChromoDynamics (NRQCD)

### Purpose of NRQCD

Describe how a  $c\bar{c}$  pair with given color and quantum numbers can hadronize (color singlet) to a charmonium with definite quantum numbers.

### Example

Basically, It gives the probability of such process :

Fig. 6: 3PJ(8) state leading to  $J/\psi$  3S1(1)

## Quick overview of the theory regarding J/ $\psi$ production in jets Non Relativistic Quantum ChromoDynamics (NRQCD)

### Hypothesis

• Factorization theorem :

$$\sigma_{J/\psi} = \sigma_{pQCD(gg \longrightarrow c\bar{c})} * \sigma_{Hadronization(NRQCD)}$$

• Velocity of the the onium state v << c :  $v = 0.3 \longrightarrow$  OK

### Important result

• Fock states expansion for a given charmonium state (for instance  $J/\psi$ ) :

 $|J/\psi\rangle = |3S_1^1\rangle \mathcal{O}(1) + |3P_J^1g\rangle \mathcal{O}(v) + |3S_0^8g\rangle \mathcal{O}(v^2) + |3S_1^8gg\rangle \mathcal{O}(v^2) + \dots$ 

• the  $\mathcal{O}'s=\text{Long Distance Matrix Elements}{\longrightarrow}$  Parameters extracted from experimental data

## Quick overview of the theory regarding J/ $\psi$ production in jets What is a jet ?



Fig. 7: From Jets at CMS and the determination of their energy scale

## Quick overview of the theory regarding ${\rm J}/\psi$ production in jets $_{\rm What \ is \ a \ jet}$ ?

### Jet definition

Not a unique definition : Jet = clustering algorithm(Anti kt, Cambridge-Aachen(C/A),...) + phase space volume R

### In our study

- R = 0.4 where  $R^2 = \eta^2 + \phi^2$  (Standard value)
- $\bullet\,$  Anti kt algorithm  $\longrightarrow$  favors pairwise clusterings involving at least one hard particle

### Quick overview of the theory regarding ${\rm J}/\psi$ production in jets $_{\rm Plan}$

### Quick reminder

$$z = rac{p_{T,J/\psi}}{p_{T,Jet}}, \ z \longrightarrow 1 \ : \ J/\psi$$
 isolated

### Plan

Compare the CMS data regarding the z observable with the results given by Pythia 8.3 Onia Showers at the generator level

### Introduction and state of art

2 Quick overview of the theory regarding J/ $\psi$  production in jets

- J/ $\psi$  hadroproduction
- Non Relativistic Quantum ChromoDynamics (NRQCD)
- What is a jet ?
- Plan

Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet

- What is Rivet ?
- Predictions using Pythia 8.1
- Predictions using Pythia 8.3 (Onia Showers)

### Outlook and conclusion

- Some improvements but still a long way to go
- Analysing Jet substructure observables
- Conclusion

Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet What is Rivet ?

"A system for validation of Monte Carlo event generators"



## Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet

What is Rivet ?

void init() {
 FinalState fs;
 VetoedFinalState jet\_input(fs);
 jet input.vetoNeutrinos();
 declare(FastJets(jet\_input, FastJets::ANTIKT, 0.4), "Jets04");

// Select final state particles with J/psi
const UnstableParticles ipsi\_fs(Cuts::abspid == PID::JPSI);
declare(jpsi\_fs, "Jpsis");

void analyze(const Event& event) {

const Jets jets = apply<FastJets>(event, "Jets04").jetsBvPt(Cuts::pT > 30\*GeV); const UnstableParticles& jpsi\_fs = apply<UnstableParticles>(event, "Jpsis");

・ロッ ・雪 ・ ・ ヨ ・

## Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet

What is Rivet ?

### Rivet

- 30 lines of code  $\longrightarrow$  histogram in root file format
- Easy C++ framework well documented with standard analyses
- A strong tool to show theoretical predictions at the generator level

# Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet Predictions using Pythia 8.1

### ${\sf J}/\psi$ production with Pythia 8.1



Fig. 8: From NRQCD in Parton Showers

- Lowest order diagrams leading to  ${\rm J}/\psi$  (or an excited state)
- + Jet = ISR + FSR + standard underlying event + J/ $\psi$  —> isolated J/ $\psi$

## Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet

Predictions using Pythia 8.1

### Pythia 8.1 configuration file

```
processParameters = cms.vstring(
    'Charmonium:all = on',
    '443:onMode = off',
    '443:onIfAny = 13 -13',
```

- Hard process = Charmonium:all
- Only Prompt
- $J/\psi$  decay in dimuon (CMS)
- Tune = CP5

## Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet

Predictions using Pythia 8.1



Fig. 9: Pythia 8.1 predictions using Rivet



Fig. 10: From Fragmentation of jets containing a prompt  $J/\psi[...]$ 

### Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet Predictions using Pythia 8.3 (**Onia Showers**)

### Parton Shower

Simulation of emission of arbitrary number of particles, usually ordered in angle or  $p_T$ 



Fig. 11: From NRQCD in Parton Showers

#### Improvements

- Higher order channels
- Expect more radiation
- A shift to lower z values

### Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet Predictions using Pythia 8.3 (Onia Showers)

Pythia 8.3 configuration file

```
processParameters = cms.vstring(
    'HardQCD:all = on',
    'CharmoniumShower:all = on',
    'OniaShower:ldmeFac = 100.',
    '443:onMode = off',
    '443:onIfAny = 13 -13',
```

- Hard process = HardQCD:all
- Onia Showers = on
- Prompt and Non-Prompt
- Boost J/ $\psi$  production by boosting  $\sigma_{NRQCD}$
- Tune = CP5

### Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet Predictions using Pythia 8.3 (Onia Showers)





Fig. 12: Pythia 8.3 (Parton Shower mode) predictions using Rivet

Predictions using Pythia 8.3 (Onia Showers)

### Introduction and state of art

f 2 Quick overview of the theory regarding J/ $\psi$  production in jets

- J/ $\psi$  hadroproduction
- Non Relativistic Quantum ChromoDynamics (NRQCD)
- What is a jet ?
- Plan
- Implementation with Pythia 8 and analysing the MC predictions at generator level using Rivet
  - What is Rivet ?
  - Predictions using Pythia 8.1
  - Predictions using Pythia 8.3 (Onia Showers)

### Outlook and conclusion

- Some improvements but still a long way to go
- Analysing Jet substructure observables
- Conclusion

### Outlook and conclusion Some improvements but still a long way to go

### Conclusion

- Pythia 8.3 does a better job describing quarkonia production in jets !
- ${\rm J}/\psi$  are not isolated : you have to seek for more radiation

### What about the substructure of Jets containing $J/\psi$ ?

Analysing Jet substructure observables

### Soft Drop algorithm



Fig. 13: From Measurements of the groomed jet radius[...] • Step 1 : Re-clustered using C/A algorithm

Analysing Jet substructure observables

### Soft Drop algorithm



Fig. 14: From Measurements of the groomed jet radius[...]

- Step 1 : Re-clustered using C/A algorithm
- Step 2 : SD : while  $z_g > z_{cut}$ Jet = SubJet with larger  $p_T$

Analysing Jet substructure observables

### Soft Drop algorithm



Fig. 15: From Measurements of the groomed jet radius[...]

- Step 1 : Re-clustered using C/A algorithm
- Step 2 : SD algo : while  $z_g < z_{cut}$ Jet = Jet with larger  $p_T$
- Step 3 : Compute  $z_g$  and  $R_g$  with the final groomed Jet

#### Analysing Jet substructure observables



Fig. 16: Pythia 8.3 predictions regarding momentum splitting fraction for jets containing J/ $\psi$  (CP5)

Fig. 17: Pythia 8.3 predictions regarding groomed jet radius for jets containing  $J/\psi$  (CP5)

### What's next ?

- Try to extract from the data  $z_g$  and  $R_g$
- Taking advantage of Rivet to make comparaisons with jets containing double open charm baryons
- The Rivet analysis I made to plot the fragmentation function for  ${\rm J}/\psi$  in jets is on its way to becoming public !