Constraining new physics in diboson measurements using EFT

M2 internship project **Supervisor: Andrew Gilbert**

Kirill Biriukov, 17.06.2024

Introduction: The Standard Model

of the quantum world

Introduction: How to discover new physics?

Introduction to EFT

Observables of interest depend $\langle \mathcal{O} \rangle = \int [D_{\alpha}]$ only on soft fields

$$Z[j_s, j_h] = \int [D\phi_s D\phi_h] \exp\left\{iS[\phi_s, \phi_h] + \int_x (j_s\phi_s + j_h\phi_h)\right\}$$

$$\mathcal{O}\phi_s D\phi_h] \exp\left\{iS[\phi_s,\phi_h]\right\} \mathcal{O}(\phi_s) = \int [D\phi_s] \exp\left\{iS_{\Lambda}[\phi_s]\right\} \mathcal{O}(\phi_s)$$

Action of Effective Theory

$$[\phi_s] = \int d^D x \sum_n \lambda_n \mathcal{O}_n \qquad \qquad \text{Local operators}$$

$$Wilson coefficients$$

SMEFT

BSM	Λ	Dragons
SMEFT	100 GeV	$\gamma, g, W, Z, \nu_i, e, \mu, \tau + u, d, s, c, b, t + h$
WEFT	5 GeV	$\gamma, g, \nu_i, e, \mu, \tau$ + u, d, s, c, b
WEFT4	2 GeV	$\gamma, g, \nu_i, e, \mu, \tau + u, d, s, c$
ChRT	500 MeV	γ, ν_i, e, μ + hadrons
ChPT	100 MeV	γ, ν _i , e, μ, π
QED	1 MeV	γ, ν_i, e
EH		γ, ν_i γ

Assumptions behind SMEFT

Poincaré invariance and locality

Preserve unitarity and causality

Mass Gap

Light BSM particles are not considered

Gauge symmetry

Same as in the SM: SU(3)xSU(2)xU(1)

SMEFT lagrangian

Lagrangian

 $\mathcal{L}_{\text{SMEFT}} = \sum_{D=2}^{\infty} \mathcal{L}_D$

Dimension 2 operator

Dimension 4
operators
$$\mathcal{L}_{D=4} = -\frac{1}{4} \sum_{V \in B, W^{i}, G^{a}} V_{\mu\nu} V^{\mu\nu} + \sum_{f \in Q, L} i \bar{f} \bar{\sigma}^{\mu} D_{\mu} f + \sum_{f \in U, D, E} i f^{c} \sigma^{\mu} D_{\mu} \bar{f}^{c}$$
$$- \left(\bar{Q} \tilde{H} Y_{u} \bar{U}^{c} + \bar{Q} H Y_{d} \bar{D}^{c} + \bar{L} H Y_{e} \bar{E}^{c} + \text{h.c.} \right) + D_{\mu} H^{\dagger} D^{\mu} H - \lambda (H^{\dagger} H)^{2} + \tilde{\theta} G^{a}_{\mu\nu}$$

Higher dimensional $\mathcal{L}_{D=5} = -(\bar{L}H^{\dagger})C_5(\bar{L}H^{\dagger}) + \text{h.c.}$ operators

$$\mathcal{L}_D = \sum_i C_{i,D} O_{i,D} \qquad C_{i,D} = \frac{C_{i,D}}{\Lambda^{D-4}}$$

 $\mathcal{L}_{D=2} = \mu_H^2 H^{\dagger} H.$

3045 dim-6 operators!!!

WZ diboson production

- Precision measurements of WZ channel are available
- LO in QCD and EFT
- 21 EFT operators affect scattering amplitude

$$\mathcal{A} = \mathcal{A}_{SM} + \mathcal{A}_{BSM}$$
 $\sigma = \sigma_{SM} + \sigma_i$

 Non-interference theorem: In the high-er the helicities of the external bosons

• Non-interference theorem: In the high-energy limit amplitudes are well characterized by

Interference resurrection technique

- r direction of the boost vector to CoM frame
- ϕ_1 and ϕ_2 are sensitive to the interference term

$$|\mathcal{M}_{int}|^2 \propto \mathcal{A}_h^{\mathrm{SM}} \mathcal{A}_{h'}^{BSM} \cos(\Delta h \cdot \varphi)$$

Deviations from the SM and sensitivity of \phi_W

- Kinematic variables: 5 angular (ϕ_W , ϕ_Z , Θ_{Boost} , θ_W , θ_Z) and 1 energetic (M₄₁)

Sensitivity of ϕ_z

Sensitivity of M₄

Sensitivity to Cw

C_W sensitivity

Conclusion

- Interference terms are accessible via interference resurrection technique
- WZ-channel is sensitive to 9 EFT operators
- Sensitivity to operators increases with the dimension of an observable
- M₄₁ is sensitive to interference term at low energies
- The most sensitive observable to cW is the combination of ϕ_W , ϕ_Z and Θ_{Boost}

Future work

- Implement algorithms of machine learning to define the most optimal observable
- Analyse sensitivity to all operators involved in WZ channel

