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1. Introduction and motivation
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Phase transitions at strong coupling

First order transitions and domain walls are fundamental
topics in physics

Examples in the context of strongly coupled field theory:
1. QCD
» (Conjectured) phase transition at finite density probed in
heavy-ion collisions
» Phase transitions in neutron stars and neutron star

mergers
2. Strongly coupled extensions of the standard model

» (First order) phase transitions in the electroweak, hidden
sectors, or at higher energies than the standard model
» Could occur via bubble nucleation in the early universe
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Phase transitions in the early universe

Dynamics of a first order phase transition with 7 = T,

>

>

>

Bubble nucleation to the low T phase starts when T
crosses T, (thermal fluctuations and quantum tunneling)
Significant bubble nucleation: rate per volume [ ~ H* =
approximation to transition temperature T, (< T.)
Nucleated bubbles expand and collide

Gravitational wave production in three stages

1. Initial collisions of the bubbles
2. Sound waves created in the collisions (dominant mechanism)
3. Final turbulent phase

Gravitational waves might be detectable by LISA or its
suCcessors
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Domain walls

Static domain walls at T ~ T,
> At a first order phase transition at T = T, we can have
domains of coexisting phases separated by domain walls
P> The pressures on both sides are balanced and the domain wall
can be static

Going away from T = T, different situations:
» for nucleated bubbles of a stable phase within an supercooled
medium
P at an interface between stable phases away from T = T,
» at an interface between phases at different temperatures
Pressure difference over the domain wall drives

. . t
Its motion

» For strong interactions solving
the surface tension, wall profile
and velocity are hard questions ,
= use gauge/gravity duality? A x

Pi>p2 V P2
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Holographic domain walls

Gauge/gravity duality: study phase transitions and domain walls by
solving classical higher dimensional gravity

» Finding classical solutions in principle straightforward
However:

» Holographic methods add one coordinate

» Solving Einstein equations numerically somewhat challenging
» Typically would like to study confinement-deconfinement
transitions — it turns out to be particularly tricky
» Confining and deconfining geometries have different structure
> Leads to a “discontinuity” of the geometry at the wall
Solutions
1. Try to solve the geometry [nevertheless ghard)

Aharony, Minwalla, Wiseman hep-th /0507219
Bantilan, Figueras, Mateos 2001.05476]

2. Study simpler (deconfining-deconfining) transitions in gravity
[See e.g. Bellantuono et al. 1906.00061; Bea et al. 2202.10503]
3. Use effective theory methods (this talk)
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2. Effective theories from holography
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Different simplifications

Solving Einstein equations numerically hard, in particular time
evolution. Simplifications:

1. Solve the effective potential V for the order parameter from
holography — use the effective potential in field theory
computation (ask Niko)

[Ares, Henriksson, Hindmarsh, Hoyos, Jokela 2109.13784, 2110.14442]

2. Match the results from gravity simulations to a hydrodynamic
theory — use the hydro theory to do numerical evoluation

(I will discuss this brleﬂy nOW) [Janik, MJ, Sonnenschein 2106.02642;

Janik, MJ, Soltanpanahi, Sonnenschein 2205.06274 + WIP]
3. Derive a hydrodynamic theory from gravity in an expansion
motivated by dynamics high-dimensional black holes

(main topic of this talk)
[MJ, Weissman 2405.17533]
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Generalized hydrodynamic model

One can define the model through a Lagrangian

[Janik, MJ, Sonnenschein 2106.02642]

L= (@ TER(T)+ T() ~5a (@) + V(3. T))
—_— ~~

deconfined confined

domain wall

Directly defined in space-time coordinates (not holographic)
Perfect fluid hydrodynamics + extra field ~

= order parameter

Equations of motion are

T =0, ad’y= oL

Oy
with T, computed from £

(), V(v,T), and a to be determined by comparing to full
gravity solutions in a holographic model (for example)

10/28



Matching with Witten's model

Use (5 dimensional) Witten model [Witten hep-th/9803131; ... ]

» Two compact coordinates: Euclidean time 7 and extra spatial
coordinate ¢
» Confinement-deconfinement transition: cigar-cylinder swap for

7 and ¢ geomEtrles[Aharony, Sonnenschein, Yankielowicz hep-th/0604161]

» The domain wall known numerically (highly nontrivial)
[Aharony, Minwalla, Wiseman hep-th/0507219]
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Almost perfect fit to T,,, with hydro model:

rv) = +*(3-2v)
V(y, T) = @T?H2M042(1 - )2
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Simulations and the wall speed

Pressure for moving domain wall at T > T, wall using:
Hydro fitted to Witten's model Gravity simulation

» Full holographic gravity simulation (only) for
deconfinement-deconfinement transition

» Domain wall and hydrodynamic waves separate

> Wall velocity determined by the hydrodynamic wave:

PA dp Ta dT
main = tanh ———— = tanh —
Vdomain wall /C (6 T P)Cs /TC TCs

» Expressed in terms of the equation of state
[Janik, MJ, Soltanpanahi, Sonnenschein 2205.06274}12 /28



Velocity formula compared to simulations

05t _ our formula

0.4t . holography

0.3}
=~
0.2}
0.1
0.0 : : - - : :
0.0 0.2 0.4 0.6 0.8 1.0 1.2
PA — Pc
pA dp
Vdomain wall = tanh /C m
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3. Black holes at large D
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Black hole solutions at large D

Solutions at high-dimensional Einstein gravity

D(D — 1)
D _
167TGD dOx\/~detg [R+A . A=—"3

Static (AdS) black hole geometry

ds® = £ (d” — f(r)dt? + dx? fry=1—(~ o
r2 \ f(r) ’ rh

Here f(r) ~ 1 unless r, —r ~1/D =

» Most of the space ~ empty AdS

» Black hole horizon — membrane with width ~ 1/D — thin at
large D

» Fluctuation modes near the horizon decoupled from the rest
[Mikel's talk]

Expect that decoupling also works for dynamical black holes. How
to describe the dynamics of the membrane?
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Effective theory for large D black holes

Consider a moving black hole Ansatz (with R = ePr/¢)
2 . . .
ds® = % (—fdt> — 2dt dr — 2C; dt dx' + gjdx' dx’)
r

F o= 1—m(t,xk)n+%f<1>(7z,t,xk),

1 1 pi(t, x*)p;(t, x¥)
i = 7%+ s ’ )
&y bt p2 m(t, xk)

1 k I @ k
G = 5p,-(t,x )RJFEC’ (R, t,x"),

with the mass m and momentum density p’ of the black hole

Solving Einstein equations as a series in 1/D gives explicit
solutions for f(l), C(l) and [Emparan, Suzuki, Tanabe 1506.06772]

Oem = L9;0'm—0;p’,
8tp,' = f&jajp,' — aj <P’r:,) — 6,-m,
» D — 1 dimensional effective theory

» Non-relativistic hydrodynamics — see scaling of g;; — easy to
simulate! [Mikel's talkly /2g




Dimensional reduction

Can the effective theory be useful at lower number of dimensions?

Reduce dimensionally (over flat manifold)
[Gouteraux Smolic, Smolic, Skenderis, Taylor 1110.2320]

D
16WGD dPx/—detg [R+ N
5
16”65 d5x \/— det g [R—&p +V(¢)]

to

where

0= oo (3p=ge) = et [ 10 (5)

» The exponential potential e3? is the critical choice separating

confining and deconfining setups  [Giirsoy, Kiritsis, Nitti 0707.1349]

» Due to 1/D correction deconfinement wins, no domain walls
» Most quasi-normal modes of black hole solution solvable
analytically [Betzios, Giirsoy, MJ, Policastro 1708.02252, 1807.01718;
Giirsoy, MJ, Policastro, Zinnato 2112.04296]

Can this setup be generalized to theories admitting domain walls? 17/28



4. A generalized black hole effective theory
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Large-D-inspired approach

Starting from the dimensionally reduced action (with Vo = D?//?)

_ 1 5. 4 2 46/3 (1
5_167TG5/dx\/*g[R 2 (000 + Voetl3 1 2¢/D)]
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Large-D-inspired approach

Starting from the dimensionally reduced action (with Vo = D?//?)

S= 16;G5 /d5x\/fg [R — g (99)° + Voe*?/3 (1 + 6V(¢>)/D)]

we consider a generalized potential where 6V is arbitrary
[MJ, Weissman 2405.17533]
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Large-D-inspired approach

Starting from the dimensionally reduced action (with Vo = D?//?)

S= 16;G5 /d5x\/fg [R — g (99)° + Voe*?/3 (1 + 6V(¢>)/D)]

we consider a generalized potential where 6V is arbitrary
[MJ, Weissman 2405.17533]
Potential similar to

» Improved holographic QCD model (first order transition)

V(g) ~e*3/6, (¢ — )

[Giirsoy, Kiritsis 0707.1324; Giirsoy, Kiritsis, Nitti 0707.1349]

» Holographic duals of spin models (high order transitions), e.g.

V(g) ~ e (14 Ce) (6 0)
[Giirsoy 1007.4854, 1007.0500]
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Generalized effective theory

Plug in (dimensionally reduced) large-D-inspired black hole ansatz

ds? = A (—fdt? — 2 dt dr — 2C; dt dx’ + gjdx' dx')
Dr 1
= —— 1)

A 3€+DA (R, t,x*),

fo= 1—m(tx )R+D(1)(Rtx)

1 1 opi(tx)p(t x)

& = plitp (t k) ’
- OR k

G = Dp(tX)R_FEC’ (R, t,x%)

A huge mess ensues ...
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Generalized effective theory

Plug in (dimensionally reduced) large-D-inspired black hole ansatz

ds? = A (—fdt? — 2dt dr — 2C; dt dx’ + gjidx’dx’)

Dr 1
A = — = 4+ A0 k
30 T Rt
1
f = 1fm(t,xk)R+5f(1)(R, t,x ),
1 1 pi(t, x")pi(t, x*
g = s Leetnlex),
D D m(t, x¥)

1 k 1 (1) k
G = Bp,-(t,x)RJrECi (R, t,x")

A huge mess ensues . ..but amazingly, you can still solve the

Einstein equations, at leading order in 1/D! You get
[MJ, Weissman 2405.17533]

dem = £8;0'm — 8;p'
A4 A, PjPi } / _} )
O¢pi = L0;&Y pi — O ( - ) + 25V ( 5 Iogm) oim

» 3+ 1 dimensional theory, D just an expansion parameter 20/28



Thermodynamics and hydrodynamics

Armed with explicit solutions, it is straightforward to check black
hole thermodynamics (for static black holes)

D 1 D
T ~ 1+ =6V (—21 ~ 2 gtt/3y ‘
47T€ |: + D < 2 ogm)] 47T€e (¢) qﬁ:—%logm
s~ o
4G

Fluctuations around a static black hole = hydrodynamic modes

w = —ilg? (shear)
w = +£/=8V/(—logm/2)/2q — ilq? (sound)

Spinodal instability for V' > 0 (as seen both from T and sound
modes)
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Domain wall solutions

Assuming dependence on only one spatial coordinate

I (m/)2 _ 7i m(X) ! 71
m - = 2/, dmdéV 2Iogm

<7 o ) (o)

Existence of a static domain wall (mg to my) implies, consistently
with the black hole thermodynamics

mq 1
O—/ dmdV’ (—2Iogm) oc—/sdT—AF
mo

1 1
0=0V (2Iogmo> -0V <2|ogm1) x AT

Another nice consistency check!
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Application to IHQCD: setup

Example: consider domain wall in the improved holographic QCD

model (IHQCD)
[Giirsoy, Kiritsis 0707.1324; Giirsoy, Kiritsis, Nitti 0707.1349]

Use the potential fitted to lattice (and other) data

2¢ 1

e 1

= e Vi T e Vine e flog(1L+ ame?)
¢ IR

[Jokela, MJ, Remes 1809.07770]

with either cyy = 0 (original) or cyy = 0.075 (adjusted)

250’.\ \\\\\
Decompose o 20 T
V(gp) = Voe4¢/3(1 +0V(9)) % 1SopTEEE e ——— ]
> 100t
with Vo = 155 and apply the sol
large-D-like expansion
% - 0 1

J 23/28



Application to IHQCD: check of thermodynamics

Check fo thermodynamics at T > T,
> Note: for T well above T, the nonrelativistic approach
unlikely to work well

0.4 €-3P
N2 T4
0.3
0.2f
0.1F
0.0

TIT,

» Unsurprisingly, the original with is passable only around
T~ T,
» The adjusted potential gives better fit 24/28



Application to IHQCD: domain walls

Results for the domain wall profile

1.0p=esssr

",x§
.‘\
0.8 .,
\\
A Y
L 0.6} \
E \
= N\
§ 04l \
\\
AN
0.2 N
.
0.0 ' ' e
15 -10 -5 0 5 10 15

» Despite differences in the thermodynamics for T > T,
profiles nearly identical

» This suggests that description works near T = T,

» Accuracy near m = 0 more difficult to check — however only
the tail of the solution probes the region where §V becomes
sizeable 25/28



Application to IHQCD: T,

(Naive) computation of the T,, components
[Work in progress]

— Tu
Tix

_Ttx

L " N — L 1

30 40 50 60 70

» Surface tension (bump in T,,) is small
» Uncertainty from fitting procedure larger than the error due to
the expansion?

> .
Result clearly asymmetric 26/28



5. Conclusion

27/28



Conclusion

| discussed two approaches for holographic phase transitions
1. A hydrodynamic setup fitted to the Witten's model
» Simple formula for domain wall velocity motivated by
simulations
2. Large-D-inspired black hole effective theory
» Generalized theory allows decription of phase transitions
> Analyzed the domain wall in [HQCD — error due to the 1/D
expansion small (?)
Future directions (for the large-D setup)
» Study time evolution =- bubble collisions and gravitational
wave production?
Other setups: black hole — black hole transitions, duals of spin
models, . ..
Extend to finite density (charged black holes)
Compare to exact IHQCD domain wall?
Study matching with near boundary (near AdSs) solutions
Try to extend to higher order?

v

vvyyvyy
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Thank you!
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Moving domain walls

» The pressures on both sides are not
balanced so one would (naively) expect
accelerated motion. .. pope F

» ... but analysis shows that eventually
the acceleration stops and the domain /
wall approaches a constant velocity N

» Common lore: friction balances the net force — challenging to
calculate

Our main result: At strong coupling, the domain wall velocity can
be understood in a simpler way using essentially only the equation
of state
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Deconfinement transition in Witten's model

> An example of a holographic theory with a first order
confinement/deconfinement phase transition: (a lower

dimensional variant of) the Witten model [witten hep-th/9803131;
Brandhuber, Itzhaki, Sonnenschein, Yankielowicz hep-th/9803263]
» On the boundary one compactifies a coordinate (¢) on a circle

with anti-periodic boundary conditions for the fermions

> At low temperatures the bulk geometry of the ¢ circle closes
off into a cigar — confinement (soliton geometry)

» At high temperatures, the geometry of the Euclidean 7 circle
closes off into a cigar — deconfined phase (black brane)

» In between, there is a first order phase transition
[Aharony, Sonnenschein, Yankielowicz hep-th/0604161]

U—00

up ur

ur up

low temperature phase high temperature phase 31 /2 8



The AMW solution

» AMW constructed numerically a static planar domain wall

solution interpolating between confined and deconfined phases
[Aharony, Minwalla, Wiseman hep-th/0507219]

» The numerical relativity setup is highly nontrivial due to the
different topologies of the geometries in the different phases

y axis o,
-
S S
[=Eh—1
3=
=)
A
Ewn
S
T < Reflection symmetry:
= T y)~yx)
3 .
i
g .
§ | Domain UV boundary
= fxy)>0 e
xy>0-7 f(x,y) =0
// — 9
Homogeneous
S Black Brane
“(0,0) A=0 X axis

(Deconfined)
» We use the solution with 4+1 bulk dimensions, dual to

a 3+1 d boundary theory with one compactified coordinate 32/28



T, of the AMW solution

(Tt Top)l2
1.0
0.8
0.6

)

» — T, + Tys from the numerical
solution

» Ridiculously good fit by

1—(x) = ;( +tanh & )

v = 0 deconf. (v =1 conf.) phase

» Only additional feature: bumb in T,

» Can be fit by

,}//2 c

X
(1 =7) ~ cosh? %

4 6 ” C
cosh? %

N.B. tanh fit also works well in nonconformal holographic models

[Attems, Bea, Casalderrey-Solana, Mateos, Zilhdo 1905.12544]
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Lagrangian for the hydrodynamic model

The hydrodynamic picture can be derived from a simple action

(Wlth 2+1 boundary dlmen5|ons) [Janik, MJ, Sonnenschein 2106.02642]

£ = (1=TR(T)+T(7) — 52 T (072 + TP222(1 — 7))

where 3ac+ =2+ 2, p(T) is the Lagrangian density for perfect
fluid hydrodynamics, and

» Option A: c

M=v, a(x)= -~
()1 =~(x))
r=1+%3-27), alx)=¢
The order parameter v is promoted into a dynamical field!

» Coupling of v to hydrodynamics natural, and will lead to
asymmetric effective potential for v when T # T,

» Option B:

Time-dependent solutions in Witten's model hard
[See however Bantilan, Figueras, Mateos 2001.05476]

» Use the hydro model (option B) for simulations
34/28



Expectations vs. simulation results

Evolve a domain wall at T > T.: expect that the wall first
accelerates and later propagates at constant velocity
t

pi>p2 P2

1 “

Simulation results in Witten's model:
pressure momentum density

Surprise! Looks rather different ...
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What's going on?

pressure momentum density

7 \\

» The domain wall moves to the right as expected, with
constant speed

» Nontrivial dynamics on the deconfined side (left)
> A hydrodynamic wave moving to the left

» Pressure difference over the hydro wave, no difference over
the domain wall

» In the middle, plasma moving to the right following the wall
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Schematic picture

P1>P2 P2

T X

The full picture is obtained by gluing together two elements:

1. A domain wall moving at constant speed to the right, with no
pressure difference

» Turns out to be boosted static domain wall!

2. A hydrodynamic wave moving to the left, supporting the
pressure difference
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Hydrodynamic wave

» The hydrodynamic wave solution should interpolate between
static plasma with pa > p. and plasma with p = p. moving
with the domain wall velocity

» Since the wave is deep in the deconfined phase, it is described
in terms of perfect fluid hydrodynamics only

» Since Vfluid = Vdomain wall » W€ MAY ACCESS Vdomain wall thrOUgh
a hydrodynamic computation in the deconfined phase!

Nonlinear hydrodynamic solution: “simple wave"
[Landau, Fluid mechanics]

» One assumes that all hydrodynamic quantities are functions of
a single variable (e.g. pressure)
» One gets our main result

PA dp Ta dT
in wall = tanh ————— = tanh
Vdomain wall n Ac (6 T p)cs n / Te.

Hydrodynamic simulations in Witten's model not precise enough to
compare to this formula. We will instead use a different
holographic model. 38/28
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Nonconformal holographic model

> A gravity+scalar field system in D = 3 + 1 bulk dimensions
1 1
5 = o [ dxvg R 007 - V(o)
Ky

V(®) = —6cosh <\@>—0.2¢4

[Janik, Jankowski, Soltanpanahi 1704.05387;
Bellantuono, Janik, Jankowski, Soltanpanahi 1906.00061]

» Two deconfined phases separated by a first order transition

010 015 020 025 030 035 040
T
» Horizon in both phases, so much easier to setup a numerical

relativity computation 39/28



Simulations in the holographic model

Quite similar results as in Witten's model:

However, some important differences:
» Smooth profiles, due to finite dissipation
» Hydrodynamic evolution also in the low temperature side
(instead of empty space)
» Different fluid velocities (not shown) on different sides of the
domain wall
» One can show that the low-T phase velocity v; = Viomain wall
=- apply our formula for the high-T phase
40/28



Velocity for the nonconformal model

05t _ our formula

0.4t . holography

0.3}
=~
0.2}
0.1
0.0 : : - - : :
0.0 0.2 0.4 0.6 0.8 1.0 1.2
PA — Pc
pA dp
Vdomain wall = tanh /C m
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Simulations for bubble nucleation

It is interesting to also study the expansion of small region of the
stable low T phase (left) in the supercooled high T phase (right)

» Model for bubble nucleation in the early universe

» Hydrodynamic wave traveling in front of bubble wall
(“deflagration™)

» Inside the bubble, fluid eventually at rest

» As earlier, pressure difference over the domain wall (not
shown) ~ 0
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Decorating the velocity formula

For the bubble nucleation case, the fluid inside the bubble is at rest

» Use this to improve the velocity formula: we can now
compute v; (instead of just basically ignoring it)

» Skipping details: a correction factor

L on [ 9P
Vdomain wall = ¢ T p,/ an TN
1= in pe (e+p)cs
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Comparison to the velocity formula

0.20 . . .
— improved formula
0.15} — original formula
e holography
= 0.10}
0.05¢

0.00 s s - - - -
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Pc —PA
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Literature on domain walls and holography

Lots of studies related to phase separation in various models:
» Dynamical, real-time dependent gravity simulations of
nonconformal setups (Einstein dilaton gravity)

» In 4+1 bulk dimensions [Attems, Bea, Casalderrey-Solana, Mateos,
Triana, Zilhdo 1703.02948; Bea, Casalderrey-Solana, Giannakopoulos,
Jansen, Mateos, Sanchez-Garitaonandia, Zilhdo 2202.10503; .. .]

» In 341 bulk dimensions [Janik, Jankowski, Soltanpanahi 1704.05387;
Bellantuono, Janik, Jankowski, Soltanpanahi 1906.00061]

» Simulations in Witten's model (top-down)
[Bantilan, Figueras, Mateos 2001.05476]

» Phase transitions in Witten-Sakai-Sugimoto model (probe
flavor branes) [Bigazzi, Caddeo, Cotrone, Paredes 2008.02579;
Bigazzi, Caddeo, Cotrone 2104.12817]

» An effective action derived from (bottom-up) holography
[Ares, Henriksson, Hindmarsh, Hoyos, Jokela 2109.13784, 2110.14442]

This talk:
1. Hydrodynamic description of static domain walls
2. A hydrodynamic formula for domain wall velocities

3. Comparison to results from holography
45/28



We study domain walls for the deconfinement transition, and
domain wall velocities using

1. (A hydrodynamic description of) the Witten's model
[Witten hep-th/9803131, ...]

2. A nonconformal holographic model with 3+1 bulk dimensions:

Einstein dilaton gravity with nontrivial dilaton potentials
[Janik, Jankowski, Soltanpanahi 1704.05387]

3. Some data from a nonconformal 441 dimensional model
[Bea, Casalderrey-Solana, Giannakopoulos, Mateos,
Sanchez-Garitaonandia, Zilhdo 2104.05708]
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A hydrodynamic model for the full T,

The fit motivates a simple covariant Ansatz:
[Janik, MJ, Sonnenschein 2106.02642]

Tuw(x) = T + (1 =T (x))TB(x)
——
confined deconfined

+ a(x) (07007 — (07)* M — (1 + T(x))(07)? i)

domain wall

with T3 = p(T)(nu + 4u,u,), u four-velocity at rest, and
> Option A:

M= )= 05a =560
» Option B:
M=7B-2), al)=¢




Why do we need a hydrodynamic model?

» For the Witten model, a numerical relativity description of
time-dependent evolution with two phases is extremely

difficult!
[See however Bantilan, Figueras, Mateos 2001.05476]

» In this case we performed numerical simulations of the
evolution of our simplified hydrodynamical model (option B)

» OQur initial condition is a tanh profile of the domain wall
between the deconfined and confined phases but at T > T,

» Since we are away from T, the solution will no longer be
static but will start to evolve in time
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First ingredient: boosted domain wall

» The most natural solution is the AMW solution boosted to
the domain wall velocity

» For this solution, the pressure of the deconfined phase next to
domain wall is pc = p(T¢)

» The fluid velocity is equal to the domain wall velocity

» Thanks to its covariance, our hydrodynamic model indeed has
such a boosted solution

» (According to numerical checks) it is the only static solution
in the rest frame of the wall
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How to apply the velocity formula?

Basic idea: since entropy and energy density are low in the low T
phase, it is well approximated by empty space
= apply the formula for the high T phase as earlier

“Prove” by going to the rest frame of the domain wall

» By conservation of energy-momentum
[Gyulassy, Kajantie, Kurki-Suonio, McLerran NPB 237, 477 (1984)]
VH €L+ PH PH — PL
H_ LT EA vy =
Vi €HtPpL €H — €L

> We obtain, inserting the simulation result py =~ p;,

€ + S
_GLHPH, SLEPH SL g
€H + PL €EH+PL  SH

» After boosting back to “lab frame”, viomain wall = vlljb as
earlier
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Linear formula of 2104.05708

Recently in similar simulations with a different nonconformal
theory (4+1 d bulk) a linear fit was obtained for the velocity:

1.05 x Pe—PA — PA [Bea, Casalderrey-Solana, Giannakopoulos, Mateos,
v~ Sanchez-Garitaonandia, Zilhdo 2104.05708]

€A
0.30
025l ~ 2.044 x
P19 2
0.20

. holography

> 015
0.10
0.05
0.00 . . .
0.00 0.05 0.10 0.15
(Pe = Pa)/ea
Linearizing our formula at small p. — pa, we obtain
e L PeTPA g 04q x PePA
€EH — €L G5 |T=T. €A €A

> 1.95 a better overall fit, 2.044 perhaps better at low p.—pa 51/28



Also compare the data of 2104.05708 to the full nonlinear formulas

0.30f
0.25¢

0.20

= 0.15}
0.10¢
0.05}

0.00 s . -
0.00 0.05 0.10 0.15
(pc —pa)/ea
» For the 441 d bulk theory, the correction term gives a drastic
improvement

— improved formula
— original formula

. holography
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