Probing neutron star interiors with gravitational waves from binary inspirals

Tanja Hinderer

Institute for Theoretical Physics, Utrecht University

Gravitational waves (GWs) now available as unique probes of fundamental physics

Here: interior structure of neutron stars with binary inspirals

Interpretation of the data contingent on accurate theoretical models

Examples of signatures in GWs that encode matter properties: tidal effects

Selected recent progress on richer phenomena when including more realistic physics

Outlook to upcoming future prospects and remaining challenges

Examples of compact objects in GR

Theoretical methods in this talk apply to any object, many applications will focus on neutron stars

Neutron stars (NSs)

- Gravity compresses ~ $1-2M_{\odot}$ of material to $~\sim 10 {\rm km}$ radius
- Quantum pressure (neutron degeneracy) can support \lesssim 0.7 M_{\odot} against collapse
 - \Rightarrow structure dominated by subatomic physics

crust ~ km

free neutrons

[density of iron ~ 10 g/cm³]

~ 10^6 g/cm³ inverse β -decay Lattice of neutron rich nuclei,

 $\sim 10^{11}$ g/cm³ neutron drip

outer core uniform liquid (mainly neutrons)

deep core

 \sim few $\times 10^{14}$ g/cm³

- ≥2x nuclear density, nucleons overlap
- new degrees of freedom relevant

Deconfined quarks? Intermediate condensate states of heavy hadrons?

Unique laboratories for QCD and emergent structure

Emergent structure of matter from fundamental building blocks

- Collective phenomena
- multi-body interactions

Compact objects in binary systems

GW signals are fingerprints of the fundamental source properties

LSC		Data (GWI50	914)		Mod	el			CARL UNIVE PRIFYS
2.0	Di da Acción da							Data Predicted		
1.5-	Actual data analysis methods much more sophisticated:									
ain (x10 ⁻²¹) 0.0 0.2	Bayesian analysis, MCMC sampling of the likelihood, high-dimensional parameter space, millions of waveform models per event									
-0.5 - -1.0 -		\checkmark	\lor	V	\bigvee	W	V			
-1.5 - S	simplified: only total mass and distance vary, usually need >15 parameters									
-2.0		0.30		0.35 Time (s)		0.4	40		0.45	
			Dat	a & Best-fit Waveform: L	GO Open Science	e Center (losc.lige	o.org); Predic	tion & Animation: C.I	lorth/M.Hannam (Cardiff Univ

Theoretical challenge: compute the dynamical spacetime

- Analytical approximations when different physics dominates at different scales:
 - Example hierarchy of scales during binary Inspiral

Connected by matching. Information can also be re-summed into Effective One Body models

GW signatures of interior structure during inspiral

• effects are small but clean and cumulative over many GW cycles

Dominant tidal effects (non-spinning objects)

• In a binary: tidal field $\mathscr{C}_{ij} = C_{0i0j}$ due to spacetime curvature from companion

induced deformation

$$\frac{Q_{ij}}{\lambda_{ijkl}} = -\frac{\lambda_{ijkl}(\omega) \mathscr{E}^{kl}}{\lambda_{ijkl}}$$

frequency-dependent response

Quadrupole deformation of exterior spacetime away from spherical symmetry e.g. Newtonian uniform stars, no viscosity:

$$\approx \frac{\lambda}{1 - (2\omega/\omega_0)^2}$$

fundamental mode frequency

[TH 2008, Damour & Nagar 2009, Binnington & Poisson 2009, ...]

Dominant tidal effects (non-spinning objects)

• In a binary: tidal field $\mathscr{C}_{ij} = C_{0i0j}$ due to spacetime curvature from companion

tidal Love number / deformability / polarizability

[TH 2008, Damour & Nagar 2009, Binnington & Poisson 2009, ...]

Tidal Love numbers reflect object's interior

• classical black holes in GR in 4 spacetime dimensions: $\lambda = 0$

GWs require the link with a skeletonized description

More rigorous setting for matching: scattering

Previous concerns about potential ambiguities due to nonlinearities of GR

S. Gralla: On the Ambiguity in Relativistic Tidal Deformability, arXiv:1710.11096

• Scattering calculations to identify coupling coefficients avoid these issues:

linear wave-like perturbations via relativistic perturbation theory

Identifications with skeletonized effective action at null infinity:

- Spacetime \approx flat
- Ratio of invariant in- and outgoing amplitudes
- Double-null coordinates with clear geometric meaning

Creci, TH, Steinhoff arXiv:2108.03385 [scalar], Ivanov & Zhou 2022 [gravity] for BHs

Dominant adiabatic influence on dynamics and GWs

Dynamics & GWs: double perturbative expansion in finite-size & post-Newtonian effects

• Energy goes into the deformation:

$$E \sim E_{
m orbit} + rac{1}{4} \mathcal{Q} \mathcal{E}$$

moving multipoles contribute to gravitational radiation

$$\dot{E}_{
m GW} \sim \left[rac{d^3}{dt^3}\left(Q_{
m orbit}+\mathcal{Q}
ight)
ight]^2$$

• approx. GW phase evolution from energy balance:

$$\Delta \phi_{
m GW}^{
m tidal} \sim \lambda rac{(M\omega)^{10/3}}{M^5} \qquad \qquad M=m_1+m_2$$

[Flanagan, TH 2008, Vines+ 2011, Damour, Nagar+ 2012, Henry+2021]

Examples for neutron stars with different EoSs aligned at 30 Hz

GWI70817: NS binary inspiral measured in GWs

Merger not measured in GWs but EM counterparts:

Incl. kilonova:

characteristic of r-process nucleosynthesis

- Radioactivity heats thousands of unstable nuclides
- Millons transition levels in UV-visible-IR
- Brightness: ejecta mass, velocity, opacity (Ye), nuclear heating rate
- Timescale & energetics: set by the photon diffusion time to escape ejecta

Also yields constraints on NS EoS e.g. Raaijmakers + 2102.11569

Observing run O4 ongoing

Next step for precision GW studies of neutron stars

Planned 3rd generation ground-based detectors (~2035)

Prototype in Maastricht

- I0 times better sensitivity than LIGO/Virgo
- wider frequency range
- O(100 000) binary merger detections per year

Dynamical tides

- *f*undamental oscillation modes have by far the strongest tidal couplings
- **f**-mode frequency: $\omega_0 \sim \sqrt{G m_1/R^3}$ (internal-structure-dependent)
- tidal forcing frequency: ~ $2\omega \sim 2\sqrt{GM/r^3}$ [circular orbits]

Enhanced tidal effects even if the resonance is not fully excited

f-mode tidal response during inspiral (NS-BH example)

Approximate effects of dynamical tides in inspirals

- inspirals: need evolution of the system near/through resonances
- multi-scale approx. + matched asymptotic expansions determine approx. effective response:

$$\frac{\lambda^{\text{eff}}(\omega)}{\lambda} \sim \frac{\omega_0^2}{\omega_0^2 - (2\,\omega)^2} & \frac{\omega_0^2}{\phi - \phi_0} & \cos[(\phi - \phi_0)^2] \text{ FresnelS}(\phi - \phi_0) + \text{ after res.}$$
before resonance
near resonance where $\phi \sim \phi_0$

$$\frac{\omega_0^2}{\omega_0^2 - (2\,\omega)^2} & \frac{\lambda^{\text{eff}}}{\omega_0^2 - (\phi_0)^2} & \text{Implemented in SEOBNRv4T}$$

 $f_{\rm GW}$ (Hz)

Richer physics from spins & relativistic effects

- angular momentum of dynamical multipoles couples with orbital & companion's spin: frame-dragging effects
- Tidal forcing frequency felt by the object is redshifted due to its strong gravity
- Effective frequency also impacted by object's spin

- more realistic description of response (linear in Ω) :

Model tested against numerical relativity simulations

Example of other modes: gravitomagnetic sector

• gravitomagnetic tidal tensor $\mathcal{B}_{ij} = {}^{*}C_{0i0j}$

~ relativistic frame-dragging fields, no Newtonian analog

- Tidally induced current multipole moments
- 'r-modes', restoring force: Coriolis effect
- Perturbation theory calculations:
 - ullet mode frequencies \propto spin frequency ${oldsymbol \varOmega}$
 - two different Love numbers $\sigma_{\rm stat}$ & $\sigma_{\rm irrot}$

[Landry, Poisson, Pani+, Damour, Nagar, ...]

Skeletonization determines relevant Love numbers for GWs

Gravitomagnetic effects add to the total tidal action:

Matter contribution to current quadrupole

$$S_{\text{magn. tid.}} \approx \int z \, d\tau \left[-\frac{1}{2} \, \dot{\boldsymbol{q}}_{ij} \, \boldsymbol{\mathcal{B}}_{ij} + L^{\text{Coriol.}} + b_1 \, \frac{d \, \dot{\boldsymbol{q}}_{ij}}{d\tau} \, \frac{d \, \dot{\boldsymbol{q}}_{ij}}{d\tau} + b_2 \, \boldsymbol{\mathcal{B}}_{ij} \, \boldsymbol{\mathcal{B}}_{ij} \right]$$

$$L^{\text{Coriol.}} = -2 \, \hat{\boldsymbol{\omega}}_B \, \Omega \, \epsilon_{ijk} \, \dot{\boldsymbol{q}}^{ij} \, \boldsymbol{q}^{ki} \qquad b_1 = \frac{3}{32(\sigma_{\text{stat}} - \sigma_{\text{irrot}})} \qquad b_2 = \frac{2\sigma_{\text{stat}}}{3}$$
Normalized mode frequency

- different adiabatic behavior (Love number combinations) before & after resonances
- Different spin orientations \Rightarrow different *m*-mode excitations

22

Signatures of phase transitions, composition gradients?

- 5Nucleons Hyperons (ϕ) Several works studied features in Love numbers Gibbs. Set 4 Example from Gomes+ 1806.04763 Maxwell, Set $10^{-4}\lambda \, ({\rm km^5})$ $\mathbf{3}$ Fwins. Set 9 • Spectrum of *f*- and *r*-modes also affected $\mathbf{2}$ 1 • Direct signatures from 'g-modes': 0 0.52.51.51 $\mathbf{2}$ Restoring force: buoyancy $M(M_{\odot})$
 - mode frequency strongly depends on transition density + size of discontinuity
 - extremely long damping times

e.g. recent calculations of quasi-normal mode frequencies: *Tonnetto+ 2003.01259* Newtonian study of GWs from g-modes due to hyperons: *Yu & Weinberg1705.04700*

Effects of viscosities in inspirals ?

- Parameterized study of adiabatic effects $Q_{ij} = -\lambda \left[1 + i \tau \omega + O(\omega^2) \right] \mathscr{C}_{ij}$ *Ripley & Yunes 2306.15633* Linearized tidal lag due to viscosity
 - ... and expect richer behavior with dynamical tides:
- mode excitations tidal heating microscopic viscosities generally dependent on temperature and frequency

Estimates of coupled feedback loop: Arras & Weinberg 1806.04163

Viscosity effects for modes in isolated NSs e.g. Alford+2010, Alford+ 2014

 More realistic description of modes with effects of (neutron) superfluidity: doubling of mode spectrum

E.g. Kantor, Gusakov

Examples of effects in inspirals that remain to be fully explored

• Further relativistic + spin effects for dynamical tides

adiabatic spin-tidal Love numbers in GWs: Castro, Gualtieri, Maselli, Pani 2204.12510

Nonlinear mode interactions

Newtonian case study: Yu, Weinberg, Arras, Kwon, Venumadhav 2211.07002

• Modes that affect the NS crust \Rightarrow electromagnetic counterparts

e.g. symmetry energy constraints from interface modes: Neill, Newton, Tsang 2403.03798

- Degeneracies e.g. with presence of dark matter, modified gravity,
- eccentricity: richer behavior due to greater variety of tidal driving frequencies, ...
- Late inspiral: tidal disruption, overlapping matter distributions, magnetic fields...., connection with merger & beyond, ...

Conclusion

- GWs are unprecedented probes of compact objects: clean gravitational channel of information, spectroscopic studies even during inspiral
- Exciting future ahead: larger, more precise GW datasets to come
- In the future: many discoveries & science payoffs expected to be limited by accuracy/physics included in theoretical models
- much recent progress, efforts to advance models, develop new theoretical tools + synergies with numerical relativity
- significant further efforts required to realize the full GW science potential