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Gravitational waves (GWs) now available as unique probes of fundamental physics

Here: interior structure of neutron stars with binary inspirals

Interpretation of the data contingent on accurate theoretical models

Examples of signatures in GWs that encode matter properties: tidal effects

Selected recent progress on richer phenomena when including more realistic physics

Outlook to upcoming future prospects and remaining challenges

Overview



Examples of compact objects in GR
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?

Black holes 

Subatomic physics

Strong gravity-matter 
couplings

Neutron stars

Horizon, 
no hair conjectures 

Exotic objects

Condensates of dark 
matter / dark energy, 
bumpy black holes /
fuzzballs / micro state 
geometries, …

Theoretical methods in this talk apply to any object, many applications will focus on 
neutron stars



Neutron stars (NSs)
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Credit: NASA

~   g/cm3    inverse 𝞫-decay106

[ density of iron ~ 10 g/cm3 ] 

~   g/cm3   neutron drip1011

~ few  g/cm3    × 1014

crust ~ km 
LaDce of neutron rich nuclei,  
   free neutrons         

outer core   
uniform liquid (mainly neutrons)

deep core  
≿2x nuclear density, nucleons overlap 
-  new degrees of freedom relevant 

?

Deconfined quarks? Intermediate condensate states of heavy hadrons?

• Gravity compresses ~  of material to km radius

• Quantum pressure (neutron degeneracy) can support  0.7  against collapse

 structure dominated by subatomic physics

1 − 2M⊙ ∼ 10

≲ M⊙
⇒



Unique laboratories for QCD and emergent structure
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Phases of QCD

Protons, 
neutrons

Quarks, 
gluons

 Electrons   

Atom
Nucleus

Emergent structure of matter from fundamental building blocks

• Collective phenomena

• multi-body interactions
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Compact objects in binary systems

dynamical spacetime   gravitational waves (GWs)⇒

▸ GW signals are fingerprints of the fundamental source properties

time

GW signal

Example: black hole coalescence

inspiral

Merger

Ringdown
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Data (GW150914)

Interpreting such GW signals relies on theoretical models
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Distance:      800 Mpc
Total Mass:   200 Msun

ModelData (GW150914)

simplified: only total mass and distance vary, usually need >15 parameters

Waveforms are characteristic fingerprints of their sources

Interpreting such GW signals relies on theoretical models
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ModelData (GW150914)

Distance:      800 Mpc
Total Mass:   65 Msun

simplified: only total mass and distance vary, usually need >15 parameters

Interpreting such GW signals relies on theoretical models

Waveforms are characteristic fingerprints of their sources



6

ModelData (GW150914)

Distance:      420 Mpc
Total Mass:   65 Msun

simplified: only total mass and distance vary, usually need >15 parameters

Interpreting such GW signals relies on theoretical models

Waveforms are characteristic fingerprints of their sources
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ModelData (GW150914)

Distance:      420 Mpc
Total Mass:   65 Msun

simplified: only total mass and distance vary, usually need >15 parameters

Interpreting such GW signals relies on theoretical models

Waveforms are characteristic fingerprints of their sources
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ModelData (GW150914)

Distance:      420 Mpc
Total Mass:   65 Msun

simplified: only total mass and distance vary, usually need >15 parameters

Actual data analysis methods much more sophisticated:  

Bayesian analysis, MCMC sampling of the likelihood, high-dimensional 
parameter space, millions of waveform models per event 

Interpreting such GW signals relies on theoretical models

Waveforms are characteristic fingerprints of their sources
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• Analytical approximations when different physics dominates at different scales: 

Theoretical challenge: compute the dynamical spacetime

Orbital scale: Newtonian 
point-masses + relativistic & 

finite-size corrections Distant wave zone: flat space + 
asymptotic multipolar waves

Strong-gravity object
+ perturbations from 
distant companion

R

L
λGW

• Example hierarchy of scales during binary Inspiral 

R   L  ≪ ≪ λGW

Nonlinear flow of information

Connected by matching.  Information can also be re-summed into Effective One Body models 

Nonlinear flow of information



• Generic phenomena

• effects are small but clean and cumulative over many GW cycles

Black hole - other objectTwo black holes (low mass)

merger 

GW signatures of interior structure during inspiral
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Spin-induced 
multipoles

Absorption
Various tidal effects
                      

Resonant & non-resonant excitation of 
isolated characteristic modes

GW spectroscopy of objects’ interiors



𝓔
𝓠

Quadrupole deformation of 
exterior spacetime away from 

spherical symmetry

ω

Dominant tidal effects (non-spinning objects)
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In a binary: tidal field 𝓔ij   due to spacetime curvature from companion= C0i0j

 induced deformation

ij

ij

 Qij = − λijkl(ω)𝓔kl

frequency-dependent response

[TH 2008, Damour & Nagar 2009, Binnington & Poisson 2009, …]

e.g. Newtonian uniform stars, no viscosity:

≈
λ

1 − ( 2 ω / ω0 )2

fundamental mode frequency



𝓔
𝓠

Quadrupole deformation of 
exterior spacetime away from 

spherical symmetry

ω

Dominant tidal effects (non-spinning objects)
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In a binary: tidal field 𝓔ij   due to spacetime curvature from companion= C0i0j

 induced deformation

ij

ij

 Qij = − λijkl(ω)𝓔kl

frequency-dependent response

For internal mode frequencies (adiabatic limit):

                   

ω ≪

≈ λ + O(ω)

tidal Love number / deformability / polarizability

[TH 2008, Damour & Nagar 2009, Binnington & Poisson 2009, …]



Tidal Love numbers reflect object’s interior
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Neutron star maXer models  
(equaYons of state EoS)
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g 
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log [density above nuclear]
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linearized perturbaCons to  

Einstein field equaCons +  
stress-energy conservaCon

Nuclear 
EFT, …

Perturbative 
QCD

Central density 
increases

𝞴 vs. mass
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λ

Different models for 
subatomic physics
(3-nucleon forces, 
symmetry energy, 
composition, …)

• classical black holes in GR in 4 spacetime dimensions:    λ = 0



GWs require the link with a skeletonized description

Effective description

[‘Skeleton’]

Relativistic effective action (neglect viscosity, absorption): 

Coupling coefficients determined by matching to the 
full description of the perturbed object & spacetime

Center of mass worldline + multipole moments

S ≈ − m∫ z dτ + ∫ z dτ [−
1
2

Qij𝓔ij+ c1
DQij

dτ
DQij

dτ
− c2 QijQij]

‘Redshift’

oscillator dynamics correspond to 
response function & are more 

general, e.g. no divergence
Multipoles couple 
with external fields

Point mass 
description
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(Large distance)

c1 =
1

4 λ z2 ω2
0

c2 = z2 ω2
0 c1



More rigorous setting for matching: scattering
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Scattering calculations to identify coupling coefficients avoid these issues: 

Creci, TH, Steinhoff arXiv:2108.03385 [scalar], Ivanov & Zhou 2022 [gravity] for BHs

Previous concerns about potential ambiguities due to nonlinearities of GR

 S. Gralla: On the Ambiguity in RelaCvisCc Tidal Deformability, arXiv:1710.11096

Spacetime  flat

Ratio of invariant in- and outgoing amplitudes

Double-null coordinates with clear geometric meaning

≈

linear wave-like perturbations via
relativistic perturbation theory 

Identifications with skeletonized effective action at null infinity: 

https://arxiv.org/abs/2108.03385


Dominant adiabatic influence on dynamics and GWs

Examples for neutron stars with  
different EoSs  aligned at 30 Hz

GW frequency ~ 30Hz

~ 350Hz

≳750Hz

Dashed lines: 1kHz

Energy goes into the deformation:

moving multipoles contribute to gravitational radiation

approx. GW phase evolution from energy balance:

E ⇠ Eorbit +
1

4
Q E
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Dynamics & GWs: double perturbative expansion in 

finite-size & post-Newtonian effects

[Flanagan, TH 2008, Vines+ 2011, Damour, Nagar+ 2012, Henry+2021] 13
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GW170817: NS binary inspiral measured in GWs
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First empirical results for tidal deformability

Λ2
Λ1

August 17, 2017: 

⇤ = G�

✓
c2

GmNS

◆5

<latexit sha1_base64="sTjGfw9KiNsJSraJ02AptcdjMu0="></latexit>

 LVC arXiv:1805.11581

90% confidence 
contour, 

 low-spin assumption

90% contour, 
 low-spin + 
same EoS 

assumption



Merger not measured in GWs but EM counterparts:
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Incl. kilonova: 

characteristic of r-process nucleosynthesis

Radioactivity heats thousands of 

unstable nuclides

Millons transition levels in UV-visible-IR

Snapshots of the spectrum 
over the first  11 days

Credit: European Southern Observatories

Brightness: ejecta mass, velocity, opacity (Ye),  
nuclear heating rate 

Timescale & energetics: set by the photon 
diffusion time to escape ejecta

Also yields constraints on NS EoS e.g. Raaijmakers + 2102.11569



Observing run O4 ongoing
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Aug. 17, 2017

Yesterday

• Higher precision measurements 

of nearby sources

• greater number & diversity of 

events 

From GWOSC
https://gwosc.org/detector_status/



Next step for precision GW studies of neutron stars
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10 times better sensitivity than LIGO/Virgo 

 wider frequency range 

O(100 000) binary merger detections per year

Prototype in Maastricht

L=40 km

US vision

Einstein Telescope

L=10 km triangle

European 
vision

Planned 3rd generation ground-based detectors (~2035)
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Enhanced Ydal effects even if the resonance is not fully excited

f-mode frequency:     (internal-structure-dependent)                  ω0 ∼ G m1/R3

tidal forcing frequency:    [circular orbits] 

 

∼ 2ω ∼ 2 G M/r3

 fundamental oscillation modes have by far the strongest tidal couplings

770 925 1080 1230 1385
fGW (Hz)

0.05

0.10

0.15
7.5 6.5 5.8 5.3 4.8

r / M-mode Ydal response during inspiral (NS-BH example)f

λ

𝓠
𝓔

Dynamical tides

End of 
inspiral

[TH +2016]

Full response

Adiabatic 

ω

r
m1

R



Approximate effects of dynamical tides in inspirals

Stidal = ∫ z dτ [−
1
2

Qij𝓔ij+
1

4 λ ω2
0

DQij

dτ
DQij

dτ
−

ω2
0

4 λ ω2
0

QijQij]

• inspirals: need evolution of the system near/through resonances

• multi-scale approx. + matched asymptotic expansions determine approx. effective response:

before resonance near resonance where 𝜙 ~ 𝜙0

770 925 1080 1230 1385
fGW (Hz)

0.05

0.10

0.15
7.5 6.5 5.8 5.3 4.8

r / M

λ

λeff

λeff(ω)
λ

∼
ω2

0

ω2
0 − (2 ω)2

&
ω2

0

ϕ − ϕ0
& cos[(ϕ − ϕ0)2] FresnelS(ϕ − ϕ0) + after res.

[TH +2016]
19

𝓠
𝓔 Implemented in 

SEOBNRv4T



Richer physics from spins & relativistic effects

[Steinhoff, TH + 2021]

- more realistic description of response (linear in ) :Ω

Model tested against numerical relativity simulations
20

ω
Ω1

Ω

object’s spin

λeff

λ
∼

z2ω2
0

[4(ω − Ωfd + 1.5 z Ω)2 − z2 ω2
0]

+ …

frame dragging

(Angular momentum couplings) Approx. coefficient inferred from 
quasi-normal mode calculations

• angular momentum of dynamical multipoles couples with orbital & companion’s spin: 
frame-dragging effects

• Tidal forcing frequency felt by the object is redshifted due to its strong gravity

• Effective frequency also impacted by object’s spin  



Tidally induced current multipole moments

‘r-modes’, restoring force: Coriolis effect

Perturbation theory calculations: 

mode frequencies  spin frequency 𝞨

two different Love numbers  & 

<latexit sha1_base64="45lQ4U/R0Tl32u4oxKOdhLmfXoI="></latexit>/

σstat σirrot

Example of other modes: gravitomagnetic sector
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Fluid motion

gravitomagnetic tidal tensor 𝓑ij = * C0i0j

𝞨

~ relativistic frame-dragging fields, no Newtonian analog

[Landry, Poisson, Pani+, Damour, Nagar, …] 



Skeletonization determines relevant Love numbers for GWs
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Gravitomagnetic effects add to the total tidal action:

Skeletonized effective description

Smagn. tid. ≈ ∫ z dτ [−
1
2

·qij 𝓑ij+LCoriol. + b1
d ·qij

dτ
d ·qij

dτ
+ b2 𝓑ij 𝓑ij]

[Gupta, Steinhoff, TH 2021, 2023]

b1 =
3

32(σstat − σirrot)
b2 =

2σstat

3
LCoriol. = − 2 ω̂B Ω ϵijk

·qij qki

Matter contribution to current quadrupole

Ω

• different adiabatic behavior (Love number combinations) before & after resonances

• Different spin orientations  different mode excitations⇒ m−

Normalized mode frequency 



Signatures of phase transitions, composition gradients?
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• Several works studied features in Love numbers

Example from Gomes+ 1806.04763

e.g. recent calculations of quasi-normal mode frequencies: Tonnetto+ 2003.01259

Newtonian study of GWs from g-modes due to hyperons:  Yu & Weinberg1705.04700

• Direct signatures from ‘g-modes’:

Restoring force: buoyancy 

mode frequency strongly depends on transition density + size of discontinuity  

extremely long damping times  

• Spectrum of - and -modes also affectedf r



Effects of viscosities in inspirals ?
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Parameterized study of adiabatic effects

Ripley & Yunes 2306.15633

… and expect richer behavior with dynamical tides: 

mode excitations - tidal heating - microscopic viscosities generally dependent on 
temperature and frequency  

Estimates of coupled feedback loop:  Arras & Weinberg 1806.04163

More realistic description of modes with effects of (neutron) superfluidity: doubling 
of mode spectrum

 
Qij = − λ [1 + i τ ω + O(ω2)] 𝓔ij

Linearized tidal lag due to viscosity

Viscosity effects for modes in isolated NSs e.g.  Alford+2010, Alford+ 2014

E.g. Kantor, Gusakov



Examples of effects in inspirals that remain to be fully explored

25

Further relativistic + spin effects for dynamical tides 

Nonlinear mode interactions

Modes that affect the NS crust  electromagnetic counterparts  

Degeneracies e.g. with presence of dark matter,  modified gravity, ….

eccentricity: richer behavior due to greater variety of tidal driving frequencies, …

Late inspiral: tidal disruption, overlapping matter distributions, magnetic fields…. , 
connection with merger & beyond, … 

…. 

⇒

adiabatic spin-tidal Love numbers in GWs:  Castro, Gualtieri, Maselli, Pani 2204.12510

Newtonian case study:  Yu, Weinberg, Arras, Kwon, Venumadhav 2211.07002

e.g. symmetry energy constraints from interface modes: Neill, Newton, Tsang 2403.03798



Conclusion
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• GWs are unprecedented probes of compact objects: clean gravitational 
channel of information, spectroscopic studies even during inspiral

• Exciting future ahead: larger, more precise GW datasets to come 

• In the future: many discoveries & science payoffs expected to be limited by 
accuracy/physics included in theoretical models 

• much recent progress, efforts to advance models, develop new theoretical 
tools + synergies with numerical relativity 

• significant further efforts required to realize the full GW science potential


