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o Motivation
o Features from holographic approach
o Results for transport

o Summing up
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Motivation: understand nature at the fundamental level

o Matter at extremes is interesting

e quark-gluon plasma
@ neutron stars

o Low-energy physical QCD is complicated
e perturbation theory has limited applicability

e lattice approach is either too expensive or not trustworthy
e all-encompassing effective models do not exist

o Alternative approach is to use holography
o Nomenclature: AdS/CFT, string or gauge/gravity duality,
top-down, bottom-up
o get somewhat close but not QCD (eg. N, = oo = 3)
e can give an all-encompassing effective model, but uncontrolled
approximation
e gain insights
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.

Irodynamics

-~

@ Theoretical green house, where new ideas grow to be
transplanted elsewhere
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Solve QCD using a neutron star?

Radius

@ Isotropy and perfect fluid model
1
R — Eg#,,R =8nGnTu(e, P(e)) , V,TH, =0
later
T = uyuy (e + P(€)) + gu P(e) + (int ng)
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Solve QCD using a neutron star?

Radius ~12 km

@ Laboratory experiments challenging, especially at high density
@ Recent and future progress (LHC, RHIC, FAIR, NICA, ...)

@ Incoming experimental data from neutron star measurements!
(LIGO/Virgo/Kagra, NICER, ...)
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Solve QCD using a neutron star?

Lattice QCD

Neutron star
cores

Theoretical results for the phase diagram

o Lattice data only available at zero/small chemical potentials
Effective field theory works at densities
Perturbative QCD: only at high densities and temperatures
Open questions at intermediate densities
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Solve QCD using a neutron star?
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Theoretical results for the phase diagram
o Lattice data only available at zero/small chemical potentials
o Effective field theory works at densities
@ Perturbative QCD: only at high densities and temperatures
@ Open questions at intermediate densities

@ Approach fr?m_strong coupling: AdS/CFT )
reviews: Jarvinen 2110708281, Hoyos—NJ—Vuorinen 2112.08422]
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Generic holographic approach: fitting strategies

Basic idea: extrapolate lattice data to higher density using
holography
Two main strategies:
Strategy |: Include confined phase, with Son_shet = O(N?), and
the transition to a deconfined phase, with Sgn_shell = C’)(Nz)

e Used in Improved Holographic QCD and V-QCD models
[Giirsoy—Kiritsis 0707.1324; Giirsoy—Kiritsis—Nitti 0707.1349;

Jarvinen—Kiritsis 1112.1261
o Fit lattice data above T = T, ]
[Gursoy—K|r|tS|s—Mazzant| Nitti 0903.2859;

NJ—-Jarvinen—Remes 1809.07770]
e Faithful to the behavior in the limit of large N,
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Strategy Il: Only deconfined black holes: no phase transition at
low density

o Fit lattice data at all temperatures
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at low density)
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Strategies 0&I| have been extended in NS context.
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Fitting example: Strategy |l

@ No phase transition, predict a critical point at nonzero p
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@ Predictions consistent with heavy-ion collision data at RHIC 8/22



Follow Strategy |

@ Phase transition at zero u, extrapolate to NS matter regime
@ Intermediate-p: low-T instanton solution appears: baryons
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[Ishii-Jarvinen—Nijs 1903.06169]
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Hybrid Equations of State

Holo-NM description not reliable at low densities:
@ Match nuclear models (low densities) with holography (high
densities)
@ Variations in model parameters give rise to the band

@ Same Sholographic)_ model for NM and %M phases
[Ecker—Jarvinen—Nijs—van der Schee 1908.03213; NJ-Jarvinen—Nijs—Remes

2006.01141]
BN ReMy)>122km BN RE@M)>114km | Constrained hybrid w/o radius constraint Al hybrid
p(MeV/fm®) MM)
10*
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[NJ-Jarvinen—Remes 2111.12101]

e CompOSE: 3x 1d JJ(VQCD) follows APR up to 1.6n;
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Holographically aided QCD phase diagram

@ Given EoS can be extended to finite-T

o Refined phase dagram, CompOSE, 3,34 DEJ(DD2:VQCR),

Extrapolated
Nuclear
Matter

(Traditional)
Nuclear Holographic
Model

ng
@ EoS has been used in NS merger simulations
[see Christian Ecker’s talk]

@ Systematic extension to finite- T: posterior distributions
work in progress w/ Ecker&Jarvinen]
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Does deconfined QM exist in nature?

@ Equation of state determines most important properties of
stars,

Radius Log E

but is insufficient (masquerading) to address if 3 quark matter.
@ No symmetry arguments: quark-hadron continuity

@ Sharp deconfinement (Occam'’s razor) phase transition may
lead to distinct signals
o Caveats: surface tension 0, co really, inhomogeneity,
anisotropy
@ Need to go beyond EoS: root for transport
e quarks are relativistic unlike hadrons
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r-mode instability window

@ Non-radial modes are driven ,
unstable if the star rotates /
fast enough. AN

vitational radiation

@ These modes are strongly
sheared and damped.

o Pfull GR study, estimate:

[Andersson—Kokkotas
gr-qc/0010102]

dE E
T
ox exp (iwm(Q)t + imp — t/Tm(2))

@ Maximum stable frequency
for the star:

=1/mm(Q) = —1/7ew+1/m+1/7¢ [Figure: Lindblom’98/]
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r-mode instability window

@ Indirect evidence for quark matter?
[Figures: Andersson—Kokkotas gr-qc/0010102,Alford—Schwenzer 1310.3524]
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@ Bulk viscocity ( seems interesting
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Relevance of transport in stars

Shear viscosity Bulk viscosity

Thermal conductivity

Electrical conductivity/| hyperons (if present):
stran

geness changing processes
outer|crust direct Urca (if possible)
lified Urca

lectrons
(e-phonons + e-impuriies)

inner|crust |purely leptonic processes

Teutons, strangeness changing processes
electron-neutron scatter direct Urca.
4 magnetiomoments; harone)| (CFL: kaons, superfluid phonon

superfiuid phonons

anisotropic ransport n pasta phase

(and in magnetic field)
direct Urca (i possible)
modified Urca (strong interaction effects)
Cooper pair formation

D IED nucleor-nucieon Bremsstrahiung

(transverse plasmon exchange) electromagnetic Bremsstrahlung

effect of superconductivity on screening

(superfuid) neutrons

phonons, anguions

drect Urca unpelred, 250, LOFF .
FL: mesonic contribution
quarks (one-gluon exchange) super'luid phonon
electrons (ot present in GFL)
GFL: kaons, superfluid phonon
25C: electrons, unpaired quarks
(photon &

[Schmitt—Shternin 1711.06520]

Damping of oscillations: shear 77 and bulk ( viscosities
Cooling: thermal conductivity k, neutrino emissivities
Magnetic fields: electric o and thermal conductivities
Mergers: viscosities, conductivities, evolution far from
equilibrium
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e Computing conductivities need care since spatial homogeneity

e Lorentz invariance: only one hydro transport coeff o

e No force condition;. | ) )
[Davison—Goutéraux 1505.05092; Davison—Goutéraux—Hartnoll

1507.07137]
S
E= - VT
p
~—
Seebeck coeff

e Conductivities

J=dE | ol = o< Psi
S

Q =—kIV,T | wi = g C P i
T p

@ Quiescent stars
o Local charge neutrality: 2n, — $ng — 3ns — ne =0
e Beta equilibrium: us = pg, py = ptg — e
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Holographic models encompassed

Action S = 5g|ue + Stiavor W/ Hg ~ 1/N2 Tp ~ Nf/NC:

5glue = 2% 5.2 /dSXF (R - 78/1«¢6M¢ V(¢7X)>
Shavor = —27;’ /d5x2(¢7 )\/— det(guy + K(9, X)0uxOux + w(d, X)Fpuv)

5

metric g, <+ energy-momentum tensor

flavor gauge field A, <+ baryon charge

“dilaton” ¢ <> gauge coupling
@ ‘“tachyon” x <> quark masses
Our examples include:
@ bottom-up V-QCD model (Strategy 1)
@ top-down D3-D7 model in the quenched approximation (Strategy 0)

@ can be applied to Strategy II: predictions in Beam Energy Scan

regime @RHIC
[see eg. Grefa et al. 2312.11449]
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Transport for flavor independent masses

e DC transaort determined at the black hole horizo
oyos—NJ—Jarvinen—Subils—Tarrio—Vuorinen 2005. 14205 2109.12122]

T (surface gravity) , s(area) , p(electric flux)
oH = &(r1) , X1 = X(rH)

Boundary values determine thermo: €, p,
Thermal and electric conductivities

WH
o= o (@620)2 + () TRWAZE
2K5g.

XX

Shear viscosity

n= i _ (g)g)3/2 + Sflavor

47 2/{% 47
@ Bulk viscosity (QCD part)
C 2 2/‘?% RH 5
2 = (s0spH + pOpdH)” + ——Fo75 —5 (SOsXH + pOpXH)
n P (gH)/2 w? P
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Transport of cool quark matter

logn vs. log T log( vs. log T
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@ Predictions for viscosities for unpaired quark matter
(dashed 1 = 450 MeV, solid = 600 MeV)

o Large deviation from pQCD LO results
[Heiselberg—Pethick 1993]

@ Tiny results due “idealized” case. Flavor-independent masses
so get only QCD contributions, no weak interactions or
electrons

e CompOSE: 3x 3d HJJSTV(VQCD) includes transport for QM
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Flavor dependence

@ Bulk viscosity can be enhanced by resonant EW processes
Alford—-Mahmoodifar—-Schwenzer '12]
dnd dns
F = % (s — o
dt dt ( )
@ Relevant for flavor-dependent quark masses
CruzRojas—Gorda—Hoyos—NJ—-Jarvinen—Kurkela—Paatelainen-Sappi—Vuorinen 2402.00621]

u+d+u+s

]03\ F T T
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Snga
— 10¥ I
", _/.P'\.
Tl e S
g s LN
S S,
= 10P L s
S 7
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2
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w4 (MG(xy))? ‘T=0

_ 64G,% sin2 0. cos? O

A1 3 T2 4., YA(T) R A, G(T) =G
s
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o Gauge/gravity duality (combined with other
approaches) is useful to study dense QCD

o Many details work really well:

v Precise fit of lattice thermodynamics at =~ 0

v Extrapolated EoS for cold quark matter reasonable
v/ Simultaneous model for nuclear and quark matter
v Stiff EoS for nuclear matter

o Predictions for
o equation of state of cold and finite-T matter
e transport in quark matter phase
o (properties of neutron stars)
o (gravitational wave spectrum in neutron star mergers)
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@ Observable effects in neutron star physics?
@ Possible extensions:

flavor dependent masses
isospin/other chemical potentials

neutrino emissivity fgulll\(lisorqe 3 Sen—Kiritsis—Nitti—Préau 2306.00192]

magnetic field

anisotropic equation of state

quark pairing (color “superconductivity”)
inhomogeneous phases

@ Recall caveats:

homogeneity seems lost
[CruzRojas—Demircik—Jarvinen 2405.02399; Demircik—NJ—J&rvinen—Piispa

2405.02392]
surface tension between deconfined and confined phases:
accurate lattice results coming up

Thank you!
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Inhomogeneity in holographic plasma?
Spatially modulated phases

[Nakamura, Ooguri, Park 0911.0679;
Ooguri, Park 1011.4144]  |Im(w)>0
e Exponentially growing R BN
perturbation at g # 0: 2
a quasi-normal mode with \
Imw >0
@ Chern-Simons term can drive a

a modulated instability at finite density

@ Such CS terms automatically included in the
holographic model <+ QCD chiral anomaly

@ Modulated 5D gauge fields dual to modulated
persistent chiral currents in field theory

>

Schematic fluctuation equation
! 2 2

f w
V"(r)+ (A/ + f> ¢/(r)+m¢( r)+ ( - C;) Y(r) =0

b = 8AY/r £ i6A] g From CS term . _ holographic coord.
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Modulated instability in holo-QM

The region where instability exists
[CruzRojas—Demircik—Jarvinen 2405.02399; Demircik—NJ-J&rvinen—Piispa 2405.02392]

- + - 160

1eor Deconfined phase | . Deconfined phase

Unstable 140 A
*.
to0f T 1 <
Y
5 o 3 120
g kY §
%
100
S0 1
. N\
Confined phase Unstable 80 Confined phase G
0 S 0 100 200 300 400 500
0 100 200 300 400 500 600 700

#MeV]

Va(MeV)
@ Instability is found at low T and large density — region
relevant for neutron stars (expected)

@ Instability is also found at higher T, near the regime with
critical point?! (a big surprise)
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Model dependence: strange quark mass

@ Model dependence is really rT

@ Flavor dependence in susceptibilities, visible in lattice data?

ild:

Demircik—NJ-Jarvinen—Piispa 2405.02392]
e varied model parameters <> freedom in fitting to lattice data

e varied fitting using Strategy | +> Strategy Il

e varied the flavor action DBI <> Yang—Mills truncation
@ All holographic massless QM models fitted to lattice data has

instability at high-T

Borsanyi et al. 1112

o Naive test: fit instead of the full x» the light quark x2
(dashed curves) of the Nf = 2 + 1 lattice result
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@ Strong suppression of the instability!
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