LPNHE PARIS

Neutrino-nucleus cross sections at the upgraded T2K near detector and their impact on T2K Oscillation Analyses Lavinia Russo

Boris Popov

Start date: 1st Dec 2023

Réunion de Comité de Suivi Individuel de thèse

Marco Martini

The knowledge of the neutrino-nucleus cross section is crucial

Lavinia Russo

Neutrino oscillation experiments Accelerator based case

1. Neutrino beams are not monochromatic

2. Different reaction mechanism contribute

Neutrino - nucleus interactions at $E_{\nu} \sim O(1 \text{GeV})$

- quasielastic (QE)
- incoherent π production

• coherent π production

• n nucleons knocked out (npnh)

Lavinia Russo

- identify the neutrino interactions without any mesons in the final state
- E_{ν} is reconstructed **assuming** the interaction is **CCQE** on a stationary nucleon with fixed nuclear binding energy only use lepton kinematics to get \overline{E}_{ν} !

$$E_{\nu}^{rec} \equiv E_{\nu}^{CCQE} = \frac{2 (m_n - E_B) E_l - (E_B^2 - 2m_n E_B^2 + 2E_{\nu})}{2 [(m_n - E_B) - E_l + p_l \cos (m_n - E_B) - E_l + p_l \cos (m_n - E_B) - E_l + p_l \cos (m_n - E_B))]}$$

smearing from nuclear effects (e.g. Fermi motion) and **bias** from non CCQE backgrounds

Having a (correct) model that describes the ν - nucleus interaction is crucial !

Martini et al model implementation in GENIE

Many models and many MC event generators

- Main models to calculate the nuclear responses and the ν cross sections:
 - Local Fermi Gas + RPA (Nieves et al, Martini et al)
 - Hartree-Fock + (Continuum) RPA
 - SuperScaling (SuSAv2)
- Main event generators for neutrino interactions:

Comparison between models $d^2\sigma$ in NuWro MC generator

DOI: 10.1103/PhysRevD.108.112009 ×10⁻³⁹ ×10ື d²σ cm² dcosθ_u nucleon GeV/c cm² nucleon GeV/c $0.90 < \cos(\theta) < 0.94$ 0.94 < cos(θ) < 0.98 8 е В 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 1.5 Muon Momentum (GeV/c) Muon Momentum (GeV/c) cm² nucleon GeV/c $0.98 < \cos(\theta) < 1.0$ Data NuWro 21.09 LFG+Martini $\chi^2 = 155.68$ dp_μdcosθ_μ NuWro 21.09 LFG+Nieves $\chi^2 = 141.04$ NuWro 21.09 LFG+SuSA $\chi^2 = 135.38$ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Muon Momentum (GeV/c)

- Different approximations by different groups lead to different results by each group
- Models are often mixed (LFG + Martini/ Nieves/SuSA) and this can raise problems

Comparison between models 2p2h cross section

The relative role of 2p2h for neutrinos and antineutrinos varies in each approach

Lavinia Russo

1st year CSI - LPNHE 14/05/24

First explanation of the MiniBooNE CCQE-like σ and $M_{\!A}$ puzzle

M. Martini, M. Ericson, G. Chanfray, J. Marteau Phys. Rev. C 80 065501 (2009)

Inclusion of the multinucleon emission channel - **npnh** CCQE-like = genuine CCQE + npnh

Agreement with MiniBooNE without increasing M_A

Motivation and strategy

Up to now there is no implementation of Martini et al model in any of the MC generators

Present project: full Martini et al model implementation into GENIE MC generator

Same **strategy**, approach and tools as:

\star SuSAv2: npnh [2]

PHYSICAL REVIEW D 101, 033003 (2020)

Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements

S. Dolan^{(\mathbb{D}},^{1,2,3} G. D. Megias^{(\mathbb{D}},^{1,2,4} and S. Bolognesi^(\mathbb{D})²

Lavinia Russo

\star CRPA: QE [3]

PHYSICAL REVIEW D 106, 073001 (2022)

Implementation of the continuum random phase approximation model in the GENIE generator and an analysis of nuclear effects in low-energy transfer neutrino interactions

S. Dolan^(b),^{1,*} A. Nikolakopoulos,^{2,†} O. Page^(b),³ S. Gardiner^(b),² N. Jachowicz,⁴ and V. Pandey^(b),^{2,5}

Collaborators: Stephen Dolan and Laura Munteanu

My stay at CERN 13 - 21 February 2024

Marco at the whiteboard

Lavinia Russo

lunch break with Stephen and Laura

bottom HA-TPC in building 182 before being shipped to Japan

Martini et al model implementation in GENIE npnh channel implementation

npnh implementation Step 1

npnh implementation Step 2

Conclusions and perspectives Martini et al model implementation

I started Martini et al model implementation into GENIE \checkmark npnh channel is correctly implemented

Prospects:

- Finalise the npnh implementation (add ¹⁶O and ⁴⁰Ca targets)
- Implement QE channel
- Write a paper on model-data comparison
- Port the implementation to NEUT

Performances of the HA-TPCs of the T2K upgraded near detector

The T2K experiment and its upgrade

The T2K experiment

measure Φ and σ after the oscillation

Lavinia Russo

The T2K experiment

Goal: confirm CP symmetry violation in the leptonic sector with 3σ significance

The ND280 upgrade

The ND280 upgrade is finally fully installed !

Lavinia Russo

top TPC arrival

full ND280 upgrade installation

The ND280 upgrade Event displays

• 2 stopping protons from 2p2h interaction ?

• 1 stopping proton ?

Lavinia Russo

The ND280 upgrade **The HA-TPCs**

Drift volume

Encapsulated Resistive Micromegas

Module Frame

Lavinia Russo

Requirements

dE/dx resolution better than 10% \longrightarrow to discriminate between electrons and muons

My stay in Tokai - Japan 27 February - 17 March 2024

first (and last) night shifts

Lavinia Russo

first Collaboration Meeting

2 preliminary talks:

- neutrino interaction working group
- HA-TPC working group

Study of cosmic dE/dx resolution March 2023 data taking

Steps of the analysis

- Analysis of run of cosmic rays taken at J-PARC with magnet ON
- Data are reconstructed with **hatRecon** official reconstruction software of HA-TPCs
- I look at:
 - **dE/dx** reconstructed by collected charge on ERAM plane - **p** reconstructed by B field
- I correct dE/dx by the nominal gain of each pad composing the ERAM modules -(calibrated dE/dx)
- compare data with a MC simulation

dE/dx vs momentum

1st year CSI - LPNHE 14/05/24

Mean dE/dx separation by module

- **no calibration:** data have lots of variation
- calibration: more stable trend
- MC: no variation

dE/dx resolution no separation by module

- **calibration:** improves dEdx resolution: it better matches the MC (both below 10%)
- MC: better dEdx resolution for high p

Conclusions and perspectives Performances analysis of HA-TPCs

- I work actively on HA-TPCs' official reconstruction software I am guided by Claudio \checkmark So far my contributions are mainly focused on dE/dx resolution (PID)

Prospects:

- Data analysis of first data taking with T2K upgrade ~ June 2024 Study the systematics in HAT PID and HAT momentum resolution

Lavinia Russo

Conclusions

- I work on 2 different topics:
 - Martini et al model implementation into GENIE (and NEUT)
 - Performances and track reconstruction in HA-TPCs

that will merge into CC0 π cross section analysis - probably focusing on 0 protons and 1 proton samples (profiting of the incoming data taking)

I plan to write a paper about my work with Marco ~ September 2024

Lavinia Russo

1st year conferences and experiences Done and to be done

	aim	when	contribution
CERN	start Martini's model implementation	13 - 21 February	:)
Tokai, Japan	shifts + CM	27 Feb - 17 Mar	2 preliminary talks
Milano Neutrino 2024	conference	16 - 22 June	poster about Martini model implementation into GENIE
T2K CERN workshop	CM	22 - 27 July	talks

Points de l'école doctorale

Formation	Duration	STEP' UP points	PIF points
French course	30 h	3/4	?
NUSTEC summer school	June 5 - 13	4 max	?
Statistics course	June/July	?	?
Machine learning course	September	?	?
Teaching	let's see!	1 per year	?

Lavinia Russo

References

- (1) M. Martini et al. "Unified approach for nucleon knock-out and coherent and incoherent pion
- D 101.3 (2020), p. 033003. DOI: 10.1103/PhysRevD.101.033003. arXiv: 1905.08556 [hep-ex]

production in neutrino interactions with nuclei". In: Physical Review C 80.6 (Dec. 2009). ISSN: 1089-490X. DOI: 10.1103/physrevc.80.065501. URL: http://dx.doi.org/10.1103/PhysRevC.80.065501

(2) S. Dolan, G. D. Megias, and S. Bolognesi. "Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements". In: Phys. Rev.

(3) S. Dolan et al. "Implementation of the continuum random phase approximation model in the GENIE generator and an analysis of nuclear effects in low-energy transfer neutrino interactions". In: Phys. Rev. D 106.7 (2022), p. 073001. DOI: 10.1103/PhysRevD.106.073001. arXiv: 2110.14601 [hep-ex]

Backup slides

Neutrino flux integrated $d^2\sigma$

Charged current neutrino - nucleus σ

$\nu_l \left(\bar{\nu}_l \right) + A \rightarrow l^- \left(l^+ \right) + X$

 $\frac{d^2\sigma}{d\Omega_{k'}d\omega} = \frac{G_F^2 \cos\theta_C}{4\pi} \frac{|\mathbf{k}|}{|\mathbf{k}|} \frac{U_{\mu\nu}}{U_{\mu\nu}} \frac{W^{\mu\nu}(\mathbf{q},\omega)}{W^{\mu\nu}(\mathbf{q},\omega)}$

leptonic tensor

kinematic variables

Lavinia Russo

- nucleon properties: nucleon Electric, Magnetic and Axial form factors
- nuclear dynamics: nuclear response function

Difference between generators Nieves model

