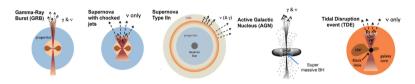
(HIGH ENERGY) NEUTRINO PROGRAMS @ GRANDMA:

Some case studies

Thierry Pradier

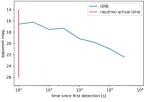
thierry.pradier@iphc.cnrs.fr

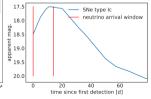
& Multimessenger Astronomy

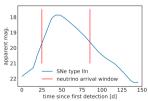


Realtime HEN Alerts Constraining the HENEM Search Volume

A large diversity of HEN sources...






...and of their signals

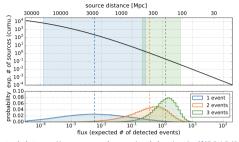
Reminders: HEN signals

- Short duration GRB-like falling lightcurve, few hours
- Medium duration SNIc BL, Kilonova few days-weeks HEN before peak
- Long duration SuperLuminous SN, SNIIn, TDE, AGN few months

Upper limits & Eddington bias

source class	local density	min. dist.	limit	source energy	max. fluence	101
	$[{ m Mpc^{-3}(yr^{-1})}]$	[Mpc]		[erg]	$[GeV^{-1} cm^{-2}]$	
long GRBs	4×10^{-10}	470	< 1% (stacked)	$< 6 \times 10^{51}$	$< 4 \times 10^{-3}$	ž į
short GRBs	3×10^{-9}	220	< 32% (OFU)	$< 3 \times 10^{52}$	$< 9 \times 10^{-2}$	E
IIGRBs	1.6×10^{-7}	64	< 100% (flux)	$< 1.5 \times 10^{51}$	$< 6 \times 10^{-2}$	ত 100% of astro. flux
SNe Ic broad.	1.4×10^{-6}	30	< 100% (flux)	$< 2 \times 10^{50}$	$< 4 \times 10^{-2}$	ş
SNe IIn	4×10^{-6}	20	< 66% (stacked)	$< 4 \times 10^{49}$	$< 1.4 \times 10^{-2}$	$E^{-2.5}$
SNe Ib/c	1.7×10^{-5}	12	< 32% (stacked)	$< 5 \times 10^{48}$	$< 5 \times 10^{-3}$	E-2.13
CCSNe	7×10^{-5}	8	< 100% (flux)	$<4 imes10^{48}$	$< 8 \times 10^{-3}$	To and a cosmillion
FSRQs	6×10^{-10}	1 000	< 17% (EHE)	$< 1.6 \times 10^{53}$	$< 3 \times 10^{-2}$	
BL Lac objects	2×10^{-7}	120	< 25% (EHE)	$< 3 \times 10^{51}$	$<2.5\times10^{-2}$	
all AGN	10^{-3}	7	< 100% (flux)	$< 3 \times 10^{46}$	$< 8 \times 10^{-5}$	
jetted TDEs	3×10^{-11}	1 000	< 100% (flux)	$< 10^{54}$	$<1.4\times10^{-1}$	BLLac & S
galaxy cluster	5×10^{-6}	40	< 100% (flux)	$< 3 \times 10^{50}$	$< 3 \times 10^{-2}$	10^{-2} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3}
starburst gal.	3×10^{-5}	22	< 100% (flux)	$< 2 \times 10^{49}$	$< 2 \times 10^{-3}$	rate at $z=0$ [Mpc ⁻³ yr ⁻¹]

N. L. Strotjohann, PhD, https://edoc.hu-berlin.de/handle/18452/21791


Which alerts/objects to observe?

- $\bullet \ \, \text{Short duration GRB-like GRBs disfavored as HEN sources} \, (\text{prompt phase}) \Rightarrow \text{what about precursor/afterglow} \, ?$
- Medium duration SNIc, Kilonova mostly unconstrained
- Long duration SNIIn, TDE, AGN unconstrained

Upper limits & Eddington bias

N. L. Strotiohann et al. https://www.aanda.org/articles/aa/pdf/2019/02/aa34750-18.pdf

Eddington Bias

- With only 1 neutrino $\rightarrow D \sim 0.5 20$ Gpc 90% (here BL Lac density, 10 events in 10 yrs for <30% detected HEN flux)
- To date, no reported multiple neutrino candidates for all Alerts (= no additional HEN found after initial IceCube alert)
- Population consists of few bright, nearby sources + many faint sources located at large distances

⇒ This can be used to reduce the Search Volume in the case of a HEN signal!

HEN Alerts (AMON/IceCube/KM3NeT)

• Gold Alerts: 12/yr, > 50% astrophysical - *latest*: 24/04/2024 - Observed $\approx 1/\text{month}$

Realtime HEN Alerts

• Bronze Alerts: 16/yr, > 30% astrophysical - latest: 19/04/2024 - Observed \approx 1.3/month

Other Public Alerts

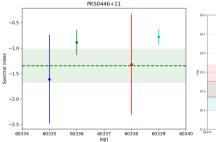
- NU EM Alerts: 2-4/vr HAWC-ICECUBE (only position + 90% radius) Observed rate ≈ 0.7/month
- ICECUBE Cascades: 8/yr, > 85% astrophysical (w. skymap) latest: 26/06/2024 -Observed rate $\approx 0.5/month$

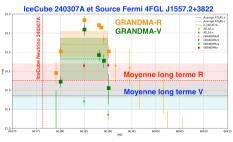
Possible Alerts - Private - MoU needed

- OFU Alerts (Optical/X-ray) : GRB/SN jets, Northern, multiplets 2 evts in 100s $\Delta\Omega < 3.5^{\circ}$ (ROTSE, PTF, Swift)
- GFU (γ-rav) : clusters around selected sources (MAGIC, VERITAS)

IceCube(/KM3NeT) Alert contents

- Position + uncertainty (convertible in fits map) $\leq 1^{\circ} \rightarrow 10^{\circ}$ (Tracks) / 20° (Cascades)
- Signalness + FAR (/v) + Energy


HEN Alerts followep by GRANDMA



Quite a few!

- IC231004A associated to SN? T+15d
- IC231211A PLS2047+098 nothing
- IC240105A PKS0446+11 variability but T+10d spectrum measured under study
- IC240307A 4FGL J1557.2+3822 variability at T+1d
- IC240327B 4FGL J0555.9+0030 KNC + GRANDMA
- IC240424A Upper Limit for Fermi J2151.3+0220

Expected Number of events vs Distance and Energy

Source - Total Isotropic Energy

$$\frac{E_{\rm iso}^{\rm HEN}}{4\pi D_L^2} = \int_{E_{\rm min}}^{E_{\rm max}} E \frac{dN}{dE} dE \propto \mathbf{\Phi_0}$$

Detection - Average Expected Number of Events

$$\langle N_{\rm HEN}(\delta) \rangle = \int_{E_{\rm min}}^{E_{\rm max}} A_{\rm eff}(\delta, E) \frac{dN}{dE} dE \propto \mathbf{\Phi_0}$$

Detection Probability vs Distance vs Energy

- Finally $\langle N_{\rm HEN} \rangle = \frac{k_0(\gamma, \delta)}{4\pi D^2} \stackrel{E^{\rm HEN}}{\Rightarrow}$ Detection probability vs $E^{\rm HEN}_{\rm iso}$ and Distance depends on spectral index $E^{-\gamma}$
- Alternatively, probability for a source to be detected with $N_{\rm HEN}^{\rm obs}=1,2,3...$ given the average $\langle N_{\rm HEN} \rangle$
 - \Rightarrow as a function of E_{inn}^{HEN}
 - \Rightarrow as a function of D_L^{iso}

Article \Rightarrow T.P. A&A 674, L11 (2023)

Constraints on origin/energy of source and ICECUBE Notices

Example 1st Notice - ICECUBE-230201A

The event was selected by the ICECUBE_Astrotrack_Bronze alert stream. The average astrophysical neutrino purity for Bronze alerts is 30%. This alert has an estimated **false** alarm rate of 2.07 events per year due to atmospheric backgrounds.

1st ICECUBE GCN - A single HEN has been detected

- ullet Assume astrophysical origin : $N_{
 m HEN}^{
 m obs}>0$
- 1 Given FAR of alert, and $T_{\rm obs} \approx 3.67$ yrs (start of new Alert System) \Rightarrow mean expected background
- 2 Given $N_{
 m HEN}^{
 m obs}=1$, extract UL on $\langle N_{
 m HEN}
 angle$ (e.g. Feldman-Cousins)
 - \Rightarrow Minimum FAR $\sim 0.15/{
 m yr} \Rightarrow \langle N_{
 m HEN} \rangle_{
 m UL} pprox 3.8$
 - \Rightarrow Minimum FAR $\sim 4.9/{
 m yr} \Rightarrow \langle N_{
 m HEN} \rangle_{
 m UL} pprox 0.9$
- 3 Extract Minimum Distance from relationship $\langle N_{\rm HEN} \rangle$ vs $D, E_{\rm iso}^{\rm HEN}$

$$D_L \ge \sqrt{\frac{\mathbf{k_0} \times E_{\mathrm{iso}}^{\mathrm{HEN}}}{4\pi \langle N_{\mathrm{HEN}} \rangle_{\mathrm{UL}}}}$$

Constraints on origin/energy of source and ICECUBE Notices

Example 2nd Notice - ICECUBE-230201A

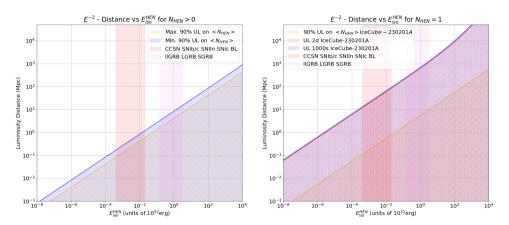
IceCube sensitivity to neutrino point sources with an E^-2.5 spectrum (E^2 dN/dE at 1 TeV) (...) is 1.3e-01 GeV cm^-2 in a 1000 second time window. 90% of events IceCube would detect from a source at this declination with an $E^{-2.5}$ spectrum have energies in the approximate energy range between 2e+02 GeV and 1e+05 GeV.

(...) The IceCube sensitivity to neutrino point sources with an E^-2.5 spectrum (E^2 dN/dE at 1 TeV) (...) ranges from 1.5e-01 to 1.6e-01 GeV cm^-2 in a 2 day time window.

2nd ICECUBE GCN - No further HEN in 1000s / 2days

$$\bullet \ \, \frac{E_{\mathrm{cmin}}^{\mathrm{HEN}}}{4\pi D^2} = \mathbf{\Phi_0} \mathbf{E_0^2} \mathbf{\Delta t} \int_{E_{\mathrm{min}}}^{E_{\mathrm{max}}} E^{1-\gamma} E_0^{\gamma-2} dE = \mathbf{\Phi_0} \mathbf{E_0^2} \mathbf{\Delta t} \times \ln \left(\frac{E_{\mathrm{max}}}{E_{\mathrm{min}}} \right) \text{ for } \gamma = 2$$

$$\bullet \ \, \text{For e.g } \gamma = 2.5 \rightarrow \Phi_0 \underline{\mathbf{E}_0^2 \Delta t} \times 2 \left(\sqrt{\frac{\underline{\mathbf{E}_0}}{\underline{\mathbf{E}}_{\min}}} - \sqrt{\frac{\underline{\mathbf{E}_0}}{\underline{\mathbf{E}}_{\max}}} \right)$$


• 2nd Notice gives E_{\min} , E_{\max} + limit on $F_{\min} = \Phi_0 E_0^2 \Delta t$ in both time windows 1000s / 2 days \rightarrow 2 limits on Distance

$$D_L \ge \sqrt{\frac{E_{\rm iso}^{\rm HEN}}{4\pi F_{\rm lim} \times {\rm constante}}}$$

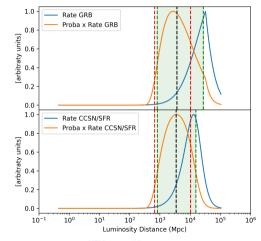
Some cases

HEN Followup - Constraining the Observation volume

Vertical colored bands = CCSN-like - GRB-like sources ranges of maximum energies from observations

 $\langle N_{
m HEN}
angle_{
m UL}$ + Fluence limit \Rightarrow ICECUBE Notices slightly constrain the Observation Volume

HEN Followup - Constraining the Observation volume

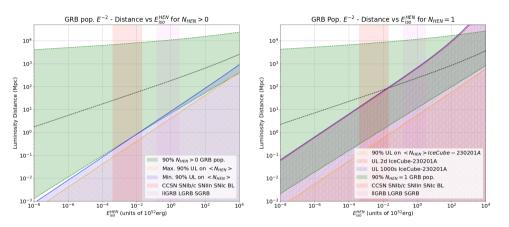


Taking into account distribution vs Redshift

• Rate of transients Mpc³/yr is redshit-dependent

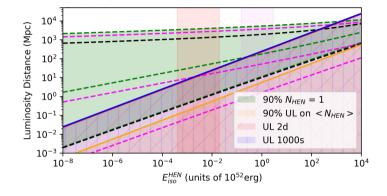
$$R_{
m transients}(z) =
ho(z) imes rac{dV_c}{dz} imes rac{(1+z)^{-1}}{
m cosmic\ time\ dilation}$$

- Use CCSN population (\approx Star-Formation Rate) vs Redshift or GRB, or any other rate $\rho(z)$
- Many distant & faint sources will dominate over few bright sources
- \bullet Convolve R(z) with $P_{\rm obs}(E_{\rm iso}^{\rm HEN},D_L(z))$ to estimate probable position/distance of Source with $N_{\rm HEN}^{\rm obs}>0$ or $N_{\rm HEN}^{\rm obs}=1$



Here $E_{\mathrm{iso}}^{\mathrm{HEN}}=10^{55}~\mathrm{erg}$ as example

HEN Followup - Constraining the Observation volume


Dashed black line - Median distance

⇒ Population information further constrains the Observation Volume

HEN Followup - All in one plot

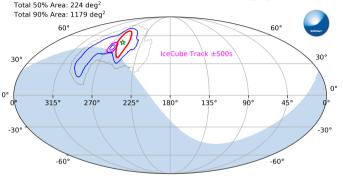
A&A 674, L11 (2023) for IC230306A. In green (lines and zone), most probable distance (90%) for a source distributed like SN, with E^{-2} . In **Black** (lines), for no z-evolution. In **purple** (lines), GRB and $E^{-2.5}$. In **yellow**, lower limit on distance after 1st alert. In **blue/red**, limit after non-observation of new HEN in 1000s / 2 days. Source it at distance in **green** zone and distance > **blue/red**. Vertical bands = indicative maximal energies for GRB $(1.5-30\times10^{51}~{\rm erg})$ or SN $(4-200\times10^{48}~{\rm erg})$.

Some cases

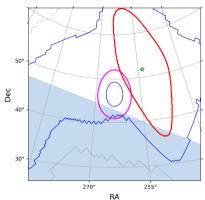
Cross-match with GLADE+

Table — Distance and ranking, R, of galaxies from the GLADE+ catalogue for the cross-matching with HEN candidate IC230306A, using P_D for $E_{\rm iso}^{\rm HEN} \in [10^{44}{\rm erg}, 10^{52}{\rm erg}]$ or without for $E_{\rm iso}^{\rm HEN} = 3.3 \times 10^{49}{\rm erg}$. Only the first ten galaxies are shown. In bold we highlight those galaxies that are not ranked in the top five with no distance information. For $E_{\rm iso}^{\rm HEN} = 10^{52}{\rm erg}$, we show the galaxies found with or without taking into account the fluence limit provided by the ICECUBE notice. The symbol (*) indicates the galaxies present in both the low- and high-energy scans. The average $\langle R \rangle$ uses $E_{\rm iso}^{\rm HEN} \in [10^{44}{\rm erg} - 10^{52}{\rm erg}]$ with distance information without a fluence limit. The last two columns include the fluence limit.

D_L (Mpc)	R	$10^{52} \mathrm{\ erg}$	$\langle R \rangle$	D_L (Mpc)	D_L (Mpc)
$W. P_{\mathrm{D}}$	no $P_{ m D}$	no $F_{ m lim}$. ,	10^{52} erg	10^{53} erg
202.2	3	1	1	426.7 (*)	1208.6
150.0	1	2	2	701.4 (*)	842.4
106.7	2	6	4	418.9	1080.4
426.7 (*)	10	3	3	306.0	861.3
140.7	6	7	5	437.7	859.4
170.9	7	5	5	386.8	1131.9
234.3	9	4	7	307.0	-
88.6	5	9	8	468.1	-
701.4 (*)	>10	>10	>10	660.6	-
35.1	4	9	9	567.2	-

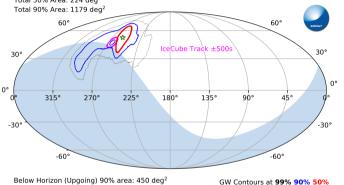

ullet For $E_{
m iso}^{
m HEN} < 10^{52} {
m erg}$, all ranking the same (no Fluence limit) - Fluence limit discard galaxies beyond 250 Mpc/800 Mpc

⇒ Need to finish implementing method


Low Significance GW + HEN Track

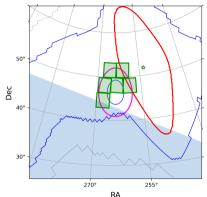
S240614BQ Skymap - 2024-06-14 @ 13:39:41.071 - KM3NeT/ORCA Upgoing Observability 24.1%

Below Horizon (Upgoing) 90% area: 450 deg² Above Horizon (Downgoing) 90% area: 729 deg² GW Contours at **99% 90% 50%** KM3NeT/ORCA upgoing field-of-view


S240614bg + ICECUBE Track

- \bullet Low significance 90% Terrestrial 10% BBH $740 \pm 230 \ \mathrm{Mpc}$
- p-value HEN ≈ 0.08 [ICECUBE Realtime GW followup site \rightarrow see here] \Rightarrow What should we do?

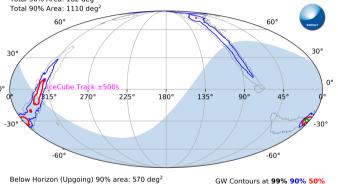
Low Significance GW + HEN Track

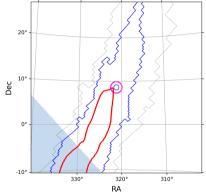


S240614BQ Skymap - 2024-06-14 @ 13:39:41.071 - KM3NeT/ORCA Upgoing Observability 24.1% Total 50% Area: 224 \deg^2

Below Horizon (Upgoing) 90% area: 450 deg²
Above Horizon (Downgoing) 90% area: 729 deg²

GW Contours at **99% 90% 50%** KM3NeT/ORCA upgoing field-of-view


S240614bq + ICECUBE Track


- \bullet Low significance 90% Terrestrial 10% BBH $740 \pm 230 \ \mathrm{Mpc}$
- p-value HEN ≈ 0.08 [ICECUBE Realtime GW followup site \rightarrow see here] \Rightarrow What should we do? Tiling for HENs?

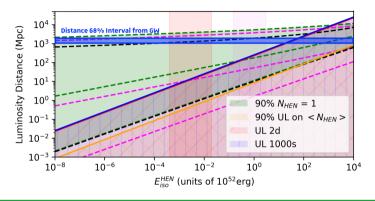
High Significance GW + HEN Track

S240601CO Skymap - 2024-06-01 @ 23:10:04.023 - KM3NeT/ORCA Upgoing Observability 60.2% Total 50% Area: 182 \deg^2

Above Horizon (Downgoing) 90% area: 540 deg²

KM3NeT/ORCA upgoing field-of-view

S240601co + ICECUBE Track

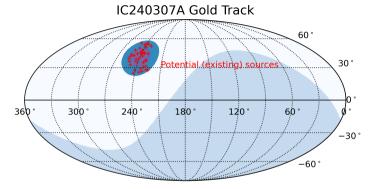

- BBH 1-2 Gpc
- p-value HEN $\approx 0.06 0.08$ [\rightarrow see here] \Rightarrow What should we do?

High Significance GW + HEN Track

Some cases

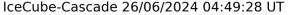
S240601co + ICECUBE Track

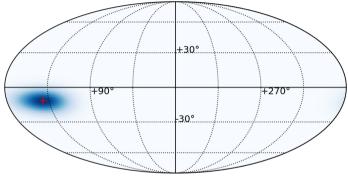
Distance consistent with only 1 HEN


⇒ Observe even if BBH?

Poorly localized HEN GOLD Track

Gold ICECUBE Track


- 15° error $\Rightarrow \approx$ 40 4FGL possible counterparts!
- Fermi 4FGL sources generally listed in ICECUBE Circular (if a few not here)
- ⇒ What to do? ATLAS/ZTF Forced Photometry on all possible sources?



Poorly localized Cascade

ICECUBE Cascade

- 31° error
- Fermi 4FGL sources not listed by ICECUBE
- ⇒ What to do? ATLAS/ZTF Forced Photometry on all possible sources?

Realtime HEN Alerts Constraining the HENEM Search Volum

Discussions

ICECUBE Track alerts

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

ICECUBE Cascade alerts

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

Low significant GW + ICECUBE Tracks

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW FAR? GW type?

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW type?

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

ICECUBE Cascade alerts

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

Low significant GW + ICECUBE Tracks

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW FAR? GW type?

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW type?

Discussions

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

ICECUBE Cascade alerts

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

Low significant GW + ICECUBE Tracks

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW FAR? GW type?

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW type?

Discussions

ICECUBE Track alerts

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

ICECUBE Cascade alerts

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Observe 4FGL sources within errox box? Only the closest? Or depending on variations in last XX days?

Low significant GW + ICECUBE Tracks

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW FAR? GW type?

- Search for counterpart? depending on size of error box? threshold? Automatic tiling?
- Threshold on p-value HEN? On GW type?