New detectors for future accelerators challenges: the Allegro detector concept

Nicolas Morange, IJCLab

Séminaire IPHC, 25/10/2024

Laboratoire de Physique des 2 Infinis

Particle Physics: Where do we want to go?

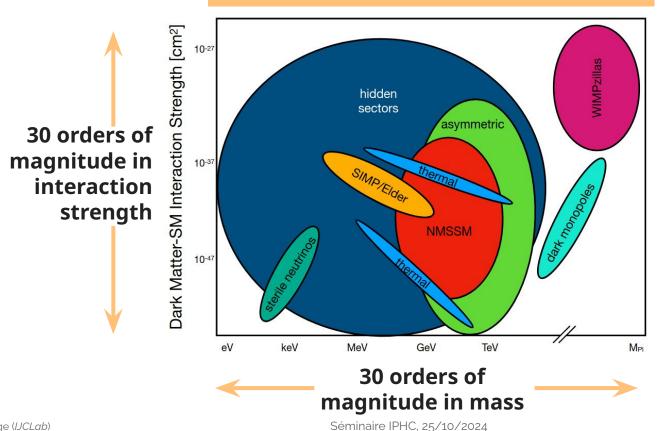
We have been good these past decades. Please could you now bring us

Dear Santa Claus,

- a dark matter candidate
- an explanation for the fermion masses
- an explanation of matter-antimatter asymmetry
- an axion, to solve the strong CP problem
- a solution to fine tuning the EW scale
- a solution to fine tuning the cosmological constant

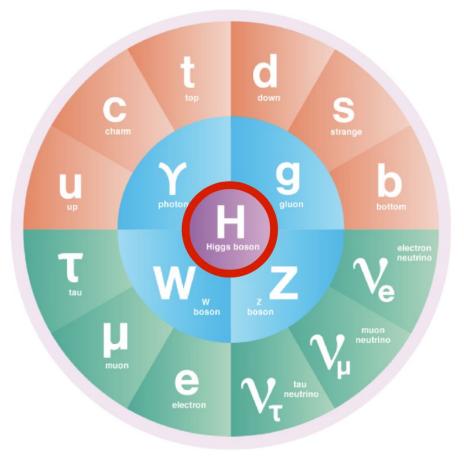
Thank you, Particle Physicists

ps: please, no anthropics


Shamelessly stolen from Gavin Salam

but

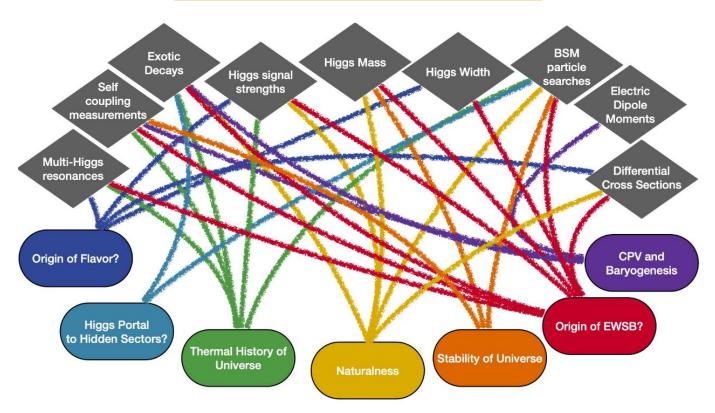
we have been so far unlucky in getting answers to many questions !


The SM is a huge success...

Dark Matter Landscape

Snowmass Dark Matter Report, 2209.07426

Higgs Boson to the Rescue

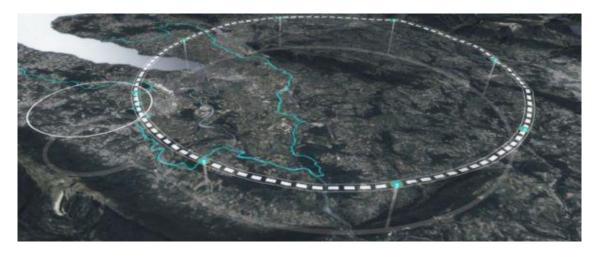


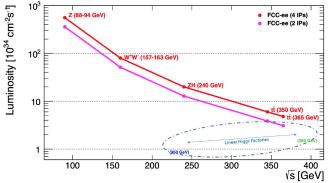
But we have been lucky in discovering a 125 GeV Higgs boson

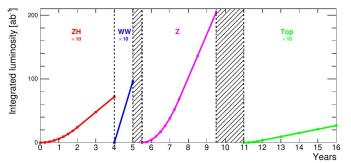
It opens a door to the most mysterious part of the Standard Model

The Higgs Landscape

Links to many mysteries of the SM !

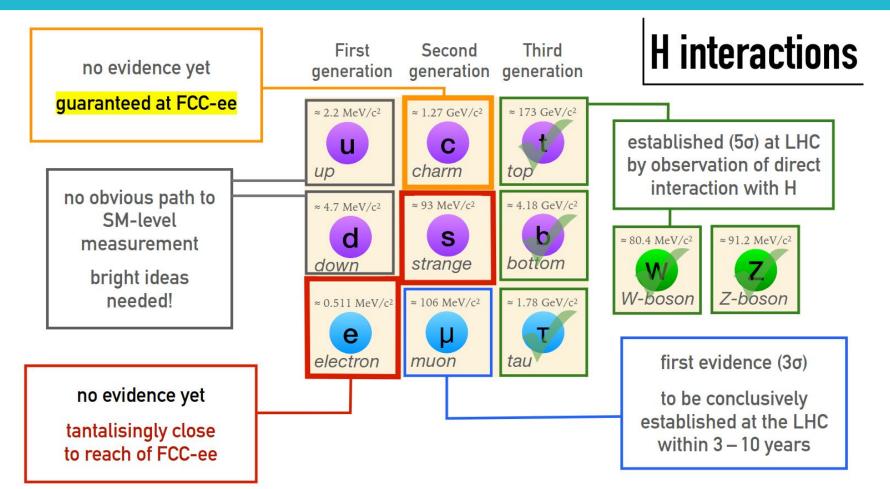

The next collider project should be an e⁺e⁻ Higgs Factory (ESPP 2020)


Desirable features of a worldwide HEP project ?


- An important target that is guaranteed to be reached (no-lose theorem)
- Exploration into the unknown by a significant factor in energy
- Major progress on a broad array of particle physics topics
- Likelihood of success, robustness (incl. multiple experiments)
- Cost-effective construction & operation, low carbon footprint

The FCC-ee project

- 90km circular collider at CERN: e⁺e⁻, then pp in long-term future
- High Luminosity: LEP every 2 minutes at Z pole
- 4 Interaction Points
- Feasibility Study being concluded
- Post-HL-LHC era: start in 20 years



Desirable features of a worldwide HEP project ?

- An important target that is guaranteed to be reached (no-lose theorem)
- Exploration into the unknown by a significant factor in energy
- Major progress on a broad array of particle physics topics
- Likelihood of success, robustness (incl. multiple experiments)
- Cost-effective construction & operation, low carbon footprint

Studying the Higgs as a no-lose theorem

Studying the Higgs as a no-lose theorem

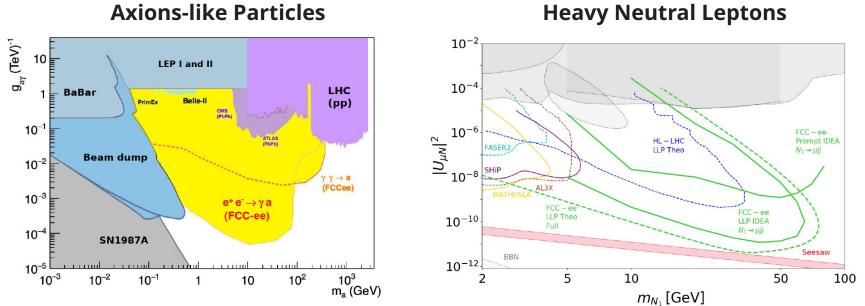
Electron Yukawa: does the Higgs mechanism explains chemistry?

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = \frac{\hbar}{m_e c\alpha} \propto \frac{1}{y_e}$$

Higgs interactions and Higgs potential

$$\mathcal{L} = y H \psi \bar{\psi} + \mu^2 |H|^2 - \lambda |H|^4 - V_0$$

$$flavour naturalness stability$$


$$cosmological constant$$

Desirable features of a worldwide HEP project ?

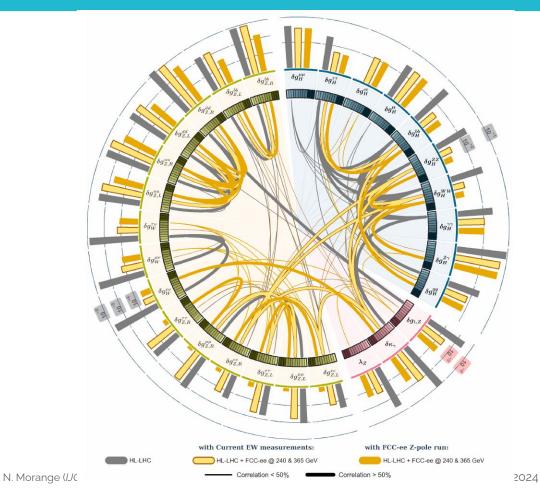
- An important target that is guaranteed to be reached (no-lose theorem)
- Exploration into the unknown by a significant factor in energy
- Major progress on a broad array of particle physics topics
- Likelihood of success, robustness (incl. multiple experiments)
- Cost-effective construction & operation, low carbon footprint

Exploring into the unknown

Complementary signatures wrt HL-LHC

Axions-like Particles

Precision measurements will probe scales up to 40 TeV (through EFTs)

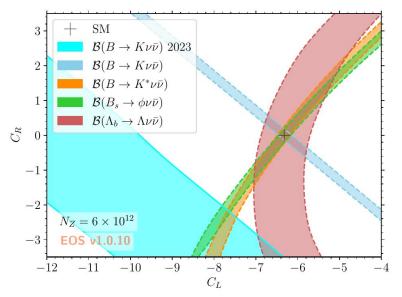

Séminaire IPHC, 25/10/2024

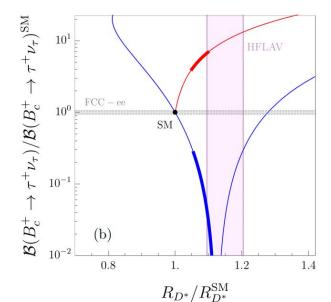
13

Desirable features of a worldwide HEP project ?

- An important target that is guaranteed to be reached (no-lose theorem)
- Exploration into the unknown by a significant factor in energy
- Major progress on a broad array of particle physics topics
- Likelihood of success, robustness (incl. multiple experiments)
- Cost-effective construction & operation, low carbon footprint

Complementarity of running energies




Expected constraints on Higgs/aTGC/EW EFT parameters

FCC-ee: a Flavour factory

10× bb and cc pairs wrt Belle 2 !

Particle species	B^0	B^+	${ m B_s^0}$	Λ_b	$\rm B_c^+$	$c\overline{c}$	$\tau^{-}\tau^{+}$
Yield $(\times 10^9)$	370	370	90	80	2	720	200

Séminaire IPHC, 25/10/202,

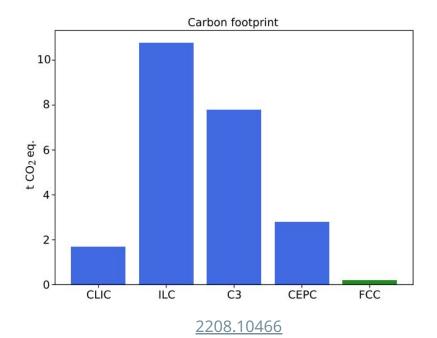
N. Morange (IJCLab)

The ultimate EW precision

A real challenge for theory calculations !

Observable	present			FCC-ee	FCC-ee	Comment and
	value	±	error	Stat.	Syst.	leading error
$m_{\rm Z}~({\rm keV})$	91186700	±	2200	4	100	From Z line shape scan Beam energy calibration
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200	±	2300	4	25	From Z line shape scan Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/lpha_{ m QED}(m_Z^2)(imes 10^3)$	128952	±	14	3	small	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767	±	25	0.06	0.2-1	Ratio of hadrons to leptons Acceptance for leptons
$\alpha_{\rm s}(m_{\rm Z}^2)~(\times 10^4)$	1196	±	30	0.1	0.4-1.6	From R_{ℓ}^{Z}
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	41541	±	37	0.1	4	Peak hadronic cross-section Luminosity measurement
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross-sections Luminosity measurement
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Ratio of $b\bar{b}$ to hadrons Stat. extrapol. from SLD
$A_{\rm FB}^{\rm b},0~(\times 10^4)$	992	±	16	0.02	1-3	b-quark asymmetry at Z pole From jet charge
$\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}$ (×10 ⁴)	1498	±	49	0.15	<2	au polarisation asymmetry $ au$ decay physics

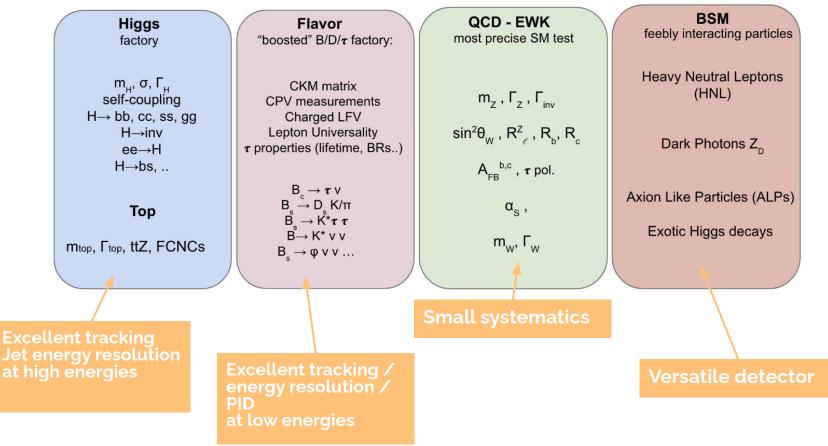
τ lifetime (fs)	290.3	\pm	0.5	0.001	0.04	Radial alignment
au mass (MeV)	1776.86	±	0.12	0.004	0.04	Momentum scale
τ leptonic ($\mu \nu_{\mu} \nu_{\tau}$) B.R. (%)	17.38	±	0.04	0.0001	0.003	e/µ/hadron separation
$m_W (MeV)$	80350	±	15	0.25	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\rm W} \ ({ m MeV})$	2085	±	42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_{ m s}({ m m}_{ m W}^2)(imes 10^4)$	1010	±	270	3	small	From $\mathbf{R}^{\mathbf{W}}_{\boldsymbol{\ell}}$
$N_{\nu}(imes 10^3)$	2920	±	50	0.8	small	Ratio of invis. to leptonic in radiative Z returns
$\rm m_{top}~(MeV)$	172740	±	500	17	small	From $t\bar{t}$ threshold scan QCD errors dominate
$\Gamma_{\rm top} \ ({\rm MeV})$	1410	±	190	45	small	From $t\bar{t}$ threshold scan QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.10	small	From $t\bar{t}$ threshold scan QCD errors dominate
ttZ couplings		±	30%	0.5 - 1.5 %	small	From $\sqrt{s} = 365 \text{GeV}$ run


Desirable features of a worldwide HEP project ?

- An important target that is guaranteed to be reached (no-lose theorem)
- Exploration into the unknown by a significant factor in energy
- Major progress on a broad array of particle physics topics
- Likelihood of success, robustness (incl. multiple experiments)
- Cost-effective construction & operation, low carbon footprint

Few words on sustainability

- Among proposed Higgs Factories, FCC-ee has the lowest carbon footprint in operation
 - Fineprints apply
 - Electricity consumption of CERN during FCC-ee same as today with LHC
 - Energy-efficient klystrons, magnets
- As a large research infrastructure, it comes with potentially large impacts during construction
 - CERN takes it very seriously to reduce them as much as possible
 - e.g investigations on low-carbon concrete, use of excavated soil...
 - Tunnel construction amortized over 50+ years

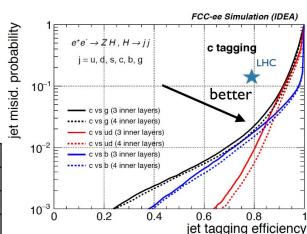

Carbon footprint / Higgs boson

Desirable features of a worldwide HEP project ?

- An important target that is guaranteed to be reached (no-lose theorem)
- Exploration into the unknown by a significant factor in energy
- Major progress on a broad array of particle physics topics
- Likelihood of success, robustness (incl. multiple experiments)
- Cost-effective construction & operation, low carbon footprint

Outstanding Physics ⇒ Strong Requirements on Detectors

A lot of fun for all detectors


AggressiveBeam-pipe $\frac{X}{X_0} < 0.5\%$		Conservative	Comments	
		$\frac{X}{X_0} < 1\%$	$B\to K^*\tau\tau$	
Vertex	$\sigma(d_0)=2\oplusrac{15}{p\mathrm{sin}^{3/2} heta}\mu\mathrm{m} \ rac{X_0}{X_0}<1\%$	-	$\begin{array}{c} B \rightarrow K^* \tau \tau \\ R_b, R_c \end{array}$	
	$\delta L = 5$ ppm	-	$\delta au_{ au} < 10 \ { m ppm}$	
Tracking	$\frac{\sigma_p}{p} < 0.1(0.2)\%$ at $\sqrt{s} = 90~(240)~{\rm GeV}$	-	$\delta M_H = 4 \; { m MeV} \ \delta \Gamma_Z = 20 \; { m keV} \ { m Z} o au \mu$	
	$\sigma_{ heta} < 0.1~{ m mrad}$. . .	$\delta_{\rm BES} < 0.2\%$ for $\delta \Gamma_Z = 40 \; \rm keV$	
	$\frac{\sigma_E}{E} = \frac{3\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}}$	${ m Z} ightarrow u_e ar u_e \gamma$	
ECAL	$\Delta x imes \Delta y = 2 imes 2 ext{ mm}^2$	$\Delta x \times \Delta y = 5 \times 5 \text{ mm}^2$	au polarisation boosted π^0 decays bremsstrahlung recovery	
	$\delta z = 100 \ \mu{ m m}, \ \delta R_{ m min} = 10 \ \ \mu{ m m} \ ({ m at} \ 20^{\circ})$	-	alignment tolerance for $\delta \mathcal{L} = 10^{-4}$ with $\gamma\gamma$ eve	
HCAL	$\frac{\sigma_E}{E} = \frac{30\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}}$	${ m H} ightarrow sar{s}, \ car{c}, \mbox{gg, invisible} \ { m HNLs}$	
	$\Delta x \times \Delta y = 2 \times 2 \ \mathrm{mm}^2$	$\Delta x \times \Delta y = 30 \times 30 \ \mathrm{mm^2}$	${ m H} ightarrow sar{s}, \; car{c}$, gg	
Muons	low momentum (p < 1 GeV) ID		$B_s ightarrow u ar{ u}$	
Particle ID	$3 - \sigma \text{ K}/\pi$ separation up to $p = 30 \text{ GeV}$	-	${ m H} o s ar{s} \ b o s u ar{ u}$	
LumiCal	tolerance $\delta z = 100 \ \mu\text{m}, \ \delta R_{\min} = 1 \ \mu\text{m}$ acceptance 50-100 mrad	-	$\delta \mathcal{L} = 10^{-4}$ target (Bhabha)	
hermeticity	-	-	$ u ar{ u} H, H ightarrow$ invisible	

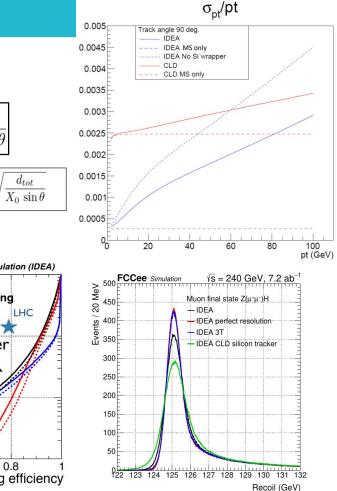
Tracking performance

- Momentum resolution
 - Avoid large contribution from MS: the lighter, the better
- Flavour tagging: vertex detector
 - Closer to IP
 - Lighter
 - Smaller pixels

$$\sigma_{d_0} = a \oplus rac{b}{p \sin^{3/2} \theta}$$

 $a \simeq 5 \, \mu \mathrm{m}; \quad b \simeq 15 \, \mu \mathrm{m} \, \mathrm{GeV}$

	r beam pipe	1 st VTX layer		
ILC	12 mm	14 mm		
CLIC	29 mm	31 mm		
FCC-ee	10 mm	12 mm		

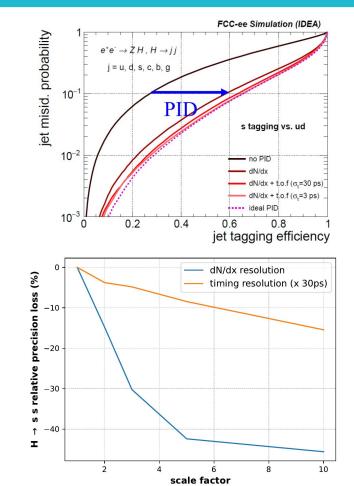

 $\sigma(p_{\rm T})/p_{\rm T}^2 = a \oplus -$

 $\frac{\Delta p_T}{p_T}|_{m.s.} \approx$

 $p\sin\theta$

 $0.0136 \,\mathrm{GeV/c}$

 $0.3\beta B_0 L_0$


Séminaire IPHC, 25/10/2024

Why PID?

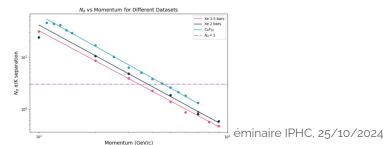
A must-have to complete the full HET programme

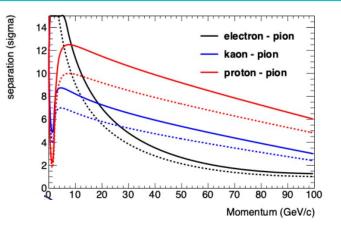
- Higgs physics
 - $H \rightarrow$ ss sensitivity driven by strange-tagging perf, depends a lot on PID performance
 - Flavour violating modes, e.g $H \rightarrow bs$
- SM parameters
 - Also depend on K identification / strange tagging
 - V_{ts}, V_{bs}
- B physics

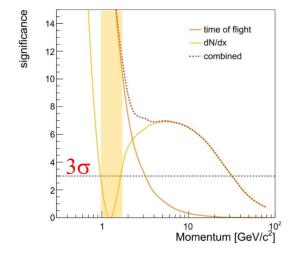
$$\circ \quad B^0_{\ s} \to D^{\pm}_{\ s} K^{\mp}, \ B \to K^* \nu \nu, \ B_s \to \varphi \nu \nu, \ ..$$

PID detectors

• Gaseous detectors


- dE/dx or cluster counting measurements
- Studies of <u>TPC</u>, <u>Straw Tracker</u>, <u>Drift chamber</u>
- Need dedicated electronics / signal processing

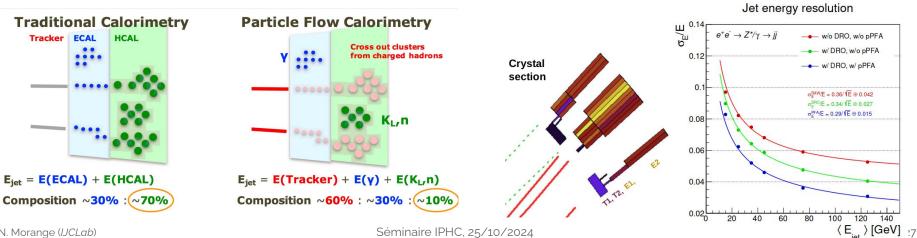

• Fast detectors for time-of-flight measurements


- Using e.g LGAD technologies
- few ps 10 ps resolution
- Used in "silicon wrapper" layers after gaseous tracker, in front of calorimeter
 - Great complementarity

• Dedicated detector: ARC concept

3σ K/π separation up to 45 GeV

Calorimeters for HET factories


An extensive set of requirements

- Energy resolution: "only" for photons and neutral hadrons
 - But: ideally photons as low as 200 300 MeV
- Dynamic range: 200 MeV 180 GeV
 - vs LHC: 6 TeV jets !
- Granularity: PID, disentangle showers for PFlow
 - But: how granular exactly ?
- Hermeticity, uniformity, calibrability, stability
 - Low systematics for precision measurements
 - Complex system-level engineering questions
- No need to be particularly fast
 - But: can precise timing help in reconstructing showers more accurately?

A quest for ultimate jet energy resolution

PFlow PFlow PFlow

- Target: $\sigma(E)/E = 30\%/\sqrt{E}$ (GeV)
 - Typical figure of merit: W/Z boson separation
 - Actual use: variety of hadronic measurements
- What granularity do we really need at HET Factories?
- New calos concepts bring new ideas (crystals DR study)

- Total

3

50

ms₉₀/E_{jet} [%]

---- Confusion

150

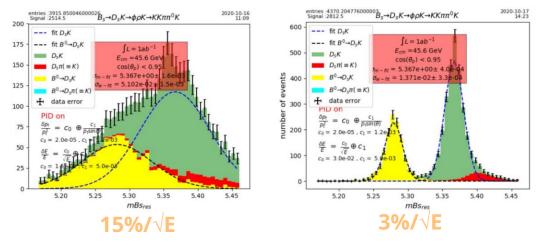
E_{JET}/GeV

100

200

250

Other


---- Resolution ---- Leakage

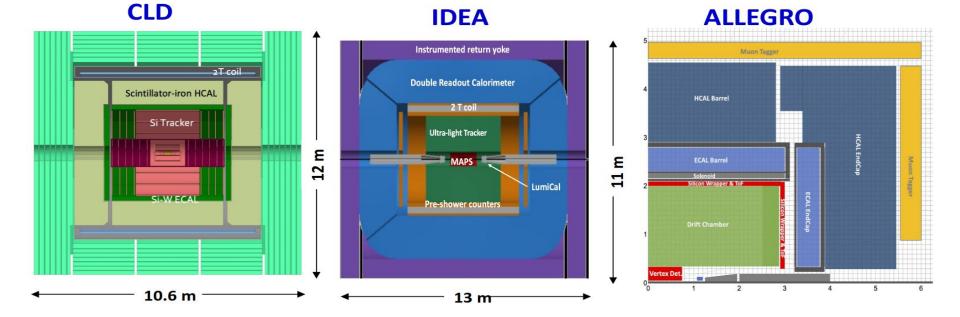
N. Morange (IJCLab)

EW factories unique challenges

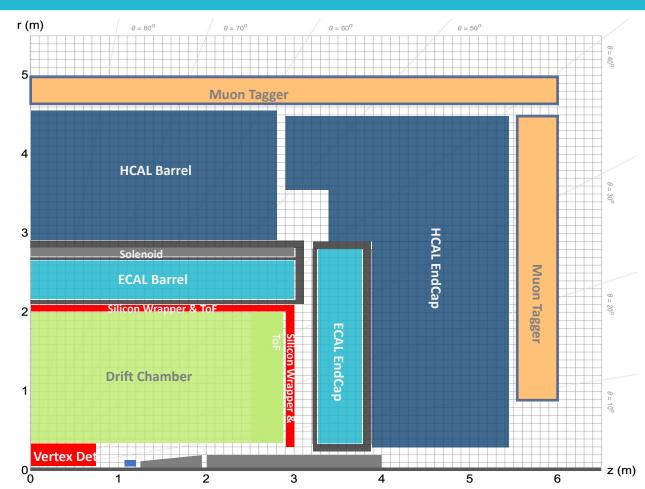
FCC-ee: O(10¹¹) B and T at 45 GeV !!!

- Some physics channels require very high EM resolution
- τ physics: reconstructing the decays
 - Means π^0 reconstruction and ID
 - Count close-by π⁰
 - Granularity
- BSM, e.g ALP searches
 - Photon resolution, photon pointing

$\begin{array}{l} Recon \to \\ Gen \downarrow \end{array}$	$\pi^{\pm}\nu$	$\pi^{\pm} \pi^0 \nu$	$\pi^{\pm} 2\pi^0 \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^{0} \nu$			
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002			
$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002			
$\pi^{\pm} 2\pi^{0} \nu$	0.0090	0.1277	0.7802	0.0808	0.0022			
$\pi^{\pm} 3\pi^{0} \nu$	0.0036	0.0372	0.2679	0.5972	0.0910			
Table: Each row shows the fraction of e.g. $\tau \to \pi^{\pm} \nu$ decays classified								


as each of the considered channels

Many options on the table, for both Ecal and Hcal


Detector technology (ECAL & HCAL)	E.m. energy res. stochastic term	E.m. energy res. constant term	ECAL & HCAL had. energy resolution (stoch. term for single had.)	ECAL & HCAL had. energy resolution (for 50 GeV jets)	Ultimate hadronic energy res. incl. PFlow (for 50 GeV jets)
Highly granular Si/W based ECAL & Scintillator based HCAL	15-17%[12,20]	$1\% \ [12,20]$	45-50~%~[45,20]	pprox 6~% ?	4 % [20]
Highly granular Noble liquid based ECAL & Scintillator based HCAL	8-10%[24,27,46]	< 1 % [24, 27, 47]	$pprox 40 \% \ [27,28]$	pprox 6~%~?	3-4% ?
Dual-readout Fibre calorimeter	11%[48]	< 1 % [48]	pprox 30 % [48]	4-5%[49]	3-4% ?
Hybrid crystal and Dual-readout calorimeter	3 % [30]	< 1 % [30]	pprox 26~%~[30]	5-6%[30,50]	3-4%[50]

- All options feature good jet energy resolution
- Varying Ecal resolution \Rightarrow Highest EM resol required for B physics
- Varying segmentation: PFlow, shower shapes, cluster pointing
- Other characteristics: Operational stability, cost

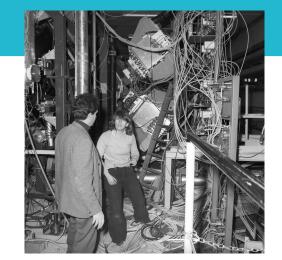
FCC-ee Detector Concepts

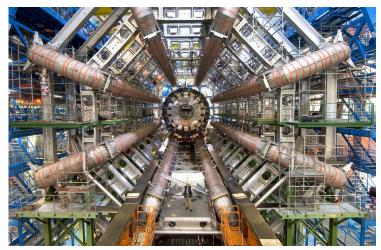
Allegro detector concept

A Lepton coLlider Experiment with Granular Read-Out

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, outside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas

Noble liquid based Ecal

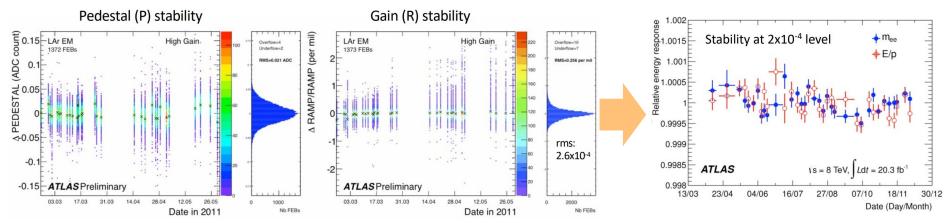

- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr


• An appealing option for FCC-ee

- Good energy resolution
- High(-ish) granularity achievable
- Linearity, uniformity, long-term stability
- Easy to calibrate

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution



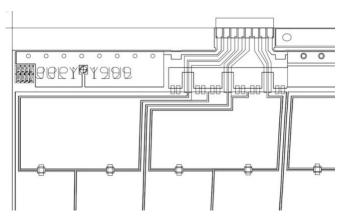
Example: Stability of ATLAS LAr Energy Scale

Noble-liquid calorimetry: High intrinsic stability

- Pedestal stability < 100 keV
- Gain stability 2.6x10⁻⁴
- Parameters monitored in daily calibration runs
 - Changes in constants needed only about 1 / month
- Stability of the energy scale of 2x10⁻⁴
 - Visible on $Z \rightarrow ee$ invariant mass and E/p

Granularity of Noble Liquid Calorimeters

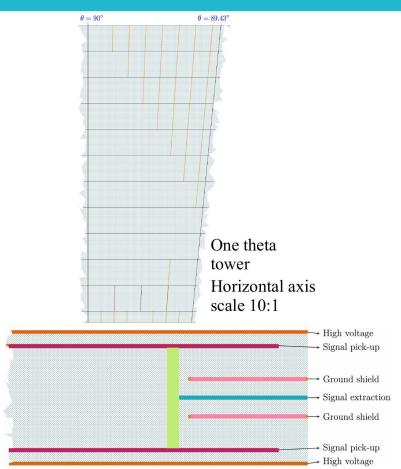
- Calorimeter design:
 - Granularity of the calorimeter
 Granularity of the electrodes


• ATLAS: copper/kapton electrode

- Traces to read out middle cells take real estate on back layer
- Cannot really increase granularity
- FCC-ee requirements
 - High jet energy resolution needed
 - Particle flow algorithms take advantage of much finer granularity

• Solution for Noble Liquid calo for FCC

• Multi-layer PCB to route signals inside

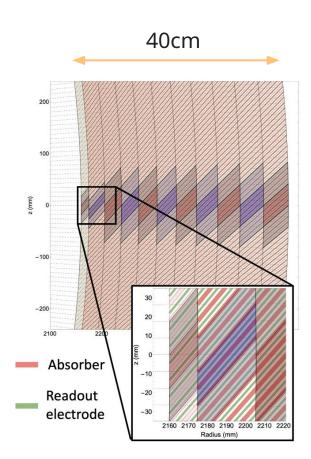

How to achieve high granularity?

Aiming for ~ ***10** ATLAS granularity

- High granularity required for better PFlow performance (few million cells)
- >6 compartments to compensate LAr gap widening

Implementation: multi-layer PCBs

- 7-layer PCB
 - Signal collection on **readout planes**
 - Transmission through via
 - Signal extraction on trace
 - **Ground shields** to mitigate cross-talk
- Challenges
 - Trade-off capacitance (noise) / cross-talk
 - Maximum density of signal traces ?
- Studies on simulations and prototypes

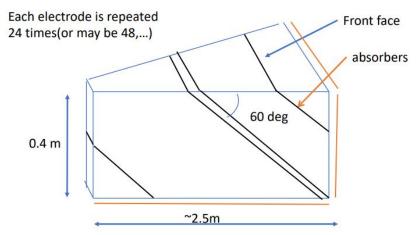

Allegro Barrel Design

Design driven by the solution used for electrodes

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr seriously considered)
- 40cm deep (22 X₀)
- $\Delta \theta$ = 10 (2.5) mrad for regular (strip) cells, $\Delta \phi$ = 8 mrad, 11 longitudinal layers

Copper electrodes: lots of flexibility

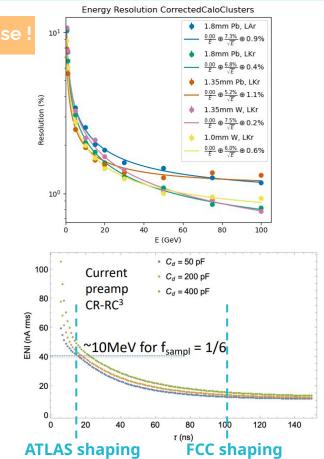
- Number of layers and granularity of layers fully optimizable
- Projective cells
- Lots of room for optimisation !


Designs for the endcaps: first ideas

Endcaps designs more complex than that of the barrel: very preliminary ideas !

- "Turbine" design
 - More similar to barrel design
 - o Symmetric in φ
 - Issue: increase in the size of the Noble liquid gaps
 - Need to stack several cylinders

- XY / Pie wedge designs
 - Less symmetry in φ
 - Increase of LAr gaps under control
 - Many types of electrodes to draw and produce



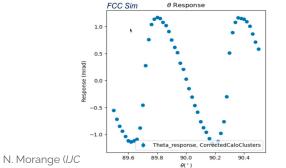
Energy resolution: design options and noise

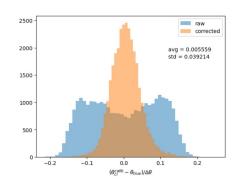
- Constant term
 - Hermeticity, low dead material, uniformity
- Sampling term: improve sampling fraction
 - Optimise gap size, sampling fraction, active and passive material
 - Explore LAr \Rightarrow LKr, Pb \Rightarrow W
 - between 5% and 7.5%
- Noise term: readout electronics
 - Want: measurement of 200 MeV photons, S/N>5 for MIPs
 - Longer shaping time wrt ATLAS (200 ns) helps a lot
 - Cold frontend electronics in the cryostat would provide noiseless readout

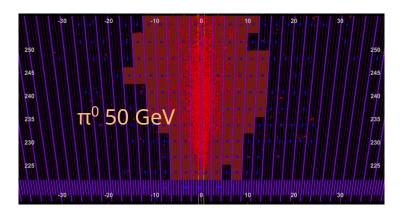
$$N\sim C_d\sqrt{rac{4kT}{g_m au_p}}$$

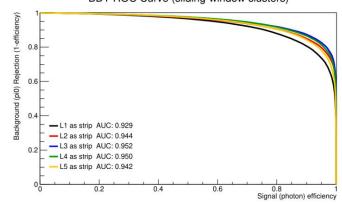
PID/PFlow: granularity optimisation

• Flexible geometry implemented in Full sim


- Can study EM shower shapes
- Benchmark: photon / π^0 separation
 - First consequence: position of "strips" layer
- Ongoing: implementation of cross-talk effects

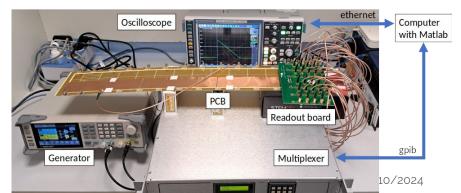

• Calibrations of reconstruction


- Simple MVA energy regression of EM clusters
- Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)


• Particle Flow on its way

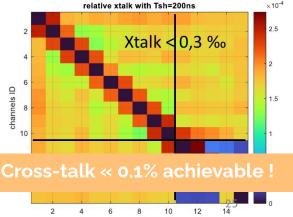
BDT ROC Curve (sliding-window clusters)

Electrodes prototypes


Explore tradeoffs: max granularity / capacitance (noise) / cross-talk

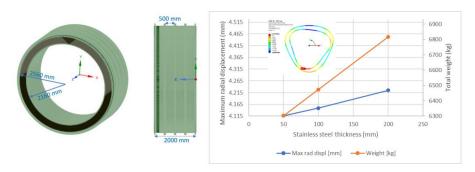
First large-scale prototype at CERN

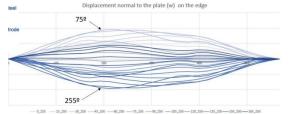
- Explore many options for grounding, for shields
- First layers readout at the front
- Few per-mille cross-talk achievable with long shaping


Latest prototype at IJCLab

- All layers readout at the back
 - Best for material budget, worse for noise and cross-talk
- New shielding ideas
- Development of system for automated measurements

Tsh = 200ns

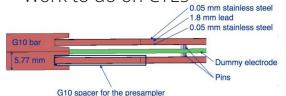



channels ID

Mechanical studies

Simulation studies

- Model the full barrel
 - Define support structures, spacers
 - Study thickness of steel sheet
 - Simulations in warm and in cold


N. Morange (IJCLau)

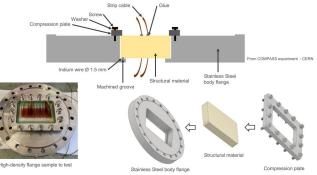
Séminaire IPHC, 25/10/2024

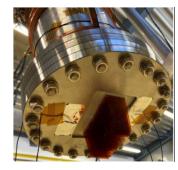
Absorbers prototypes

First feasibility prototypes

- Verify assumed rigidity
- Thermo-mechanical tests in liquid nitrogen
- Work to do on CTEs

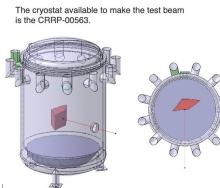
Cryostat and feedthroughs

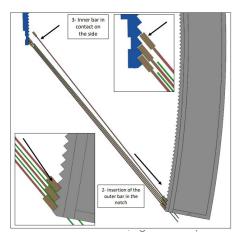

Low mass cryostats

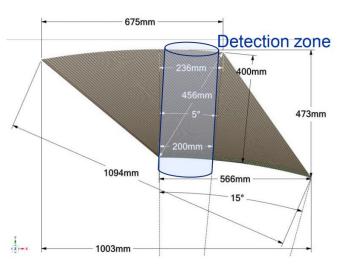

- Minimise dead material in front
 - Use of sandwiches with carbon fiber
 + Al honeycomb
 - Synergy with progress in aerospace
- CERN R&D: address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X₀ !

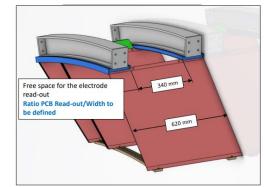
High-density feedthroughs

- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS
- Successful R&D on connector-less feedthroughs at CERN
 - 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
 - Leak tests and pressure tests at 300 K and 77 K

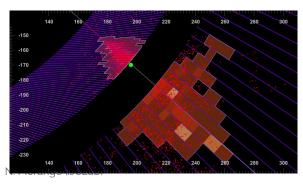


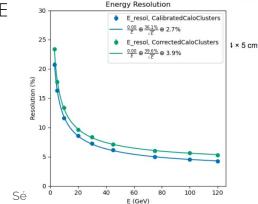


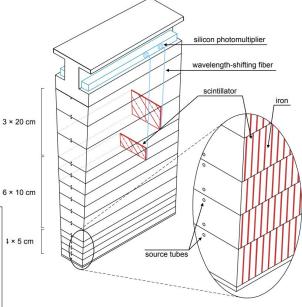

Towards a testbeam module


Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
 - Designing solutions to stack then hold the layers together
- Work on finding / adapting testbeam cryostat

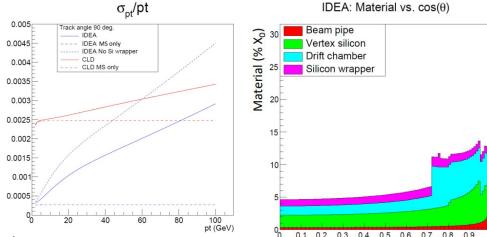




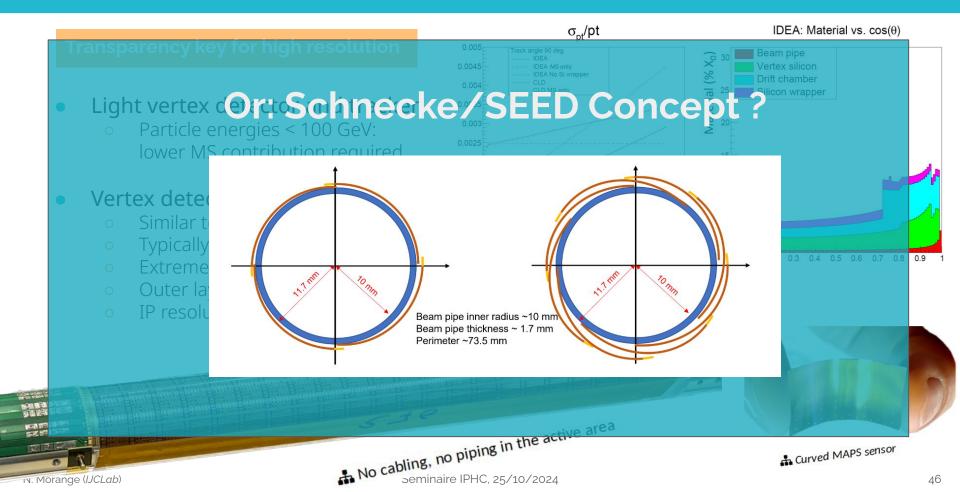


HCal for noble liquid based concept

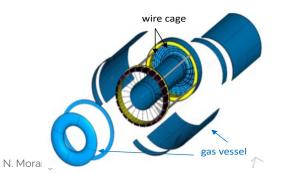
- HCal inspired by ATLAS TileCal implemented in FCC Fullsim and studied so far
 - Other Sci/Steel options, e.g CALICE AHCAL will be studied as well
- Design
 - 5mm steel absorber plates alternating with 3mm Scint.: 8 - 9.5λ
 - 128 modules in ϕ , 2 tiles/module, 13 radial layers
 - Work on optimisation of segmentation and reconstruction is in full swing
 - Started testing Sci tile + WLS fibre + SiPM readout
- Performance
 - Ecal + Hcal combined clustering implemented
 - Single-pion resolution: $36\%/\sqrt{E}$

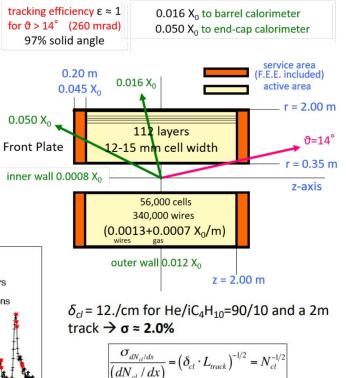


Vertex detector and momentum measurement


Transparency key for high resolution

- Light vertex detector and tracker
 - Particle energies < 100 GeV: lower MS contribution required
- Vertex detector: MAPS-based
 - Similar to e.g Belle 2 or ALICE ITS3
 - Typically: 5 layers, 33 x 33 μm² pixels
 - Extremely light: Inner layers: 0.1% X₀ / layer
 - Outer layers: 0.5 1% X₀ / layer
 - IP resolution ~10 μm


Vertex detector and momentum measurement

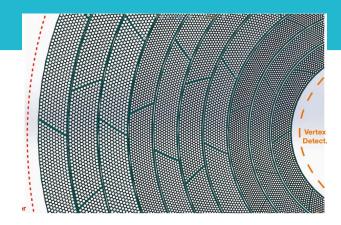

Drift chamber: IDEA design

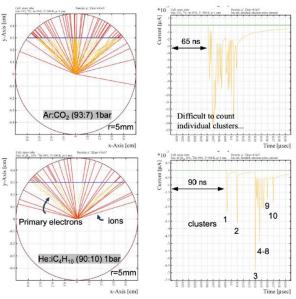
IDEA: Extremely transparent Drift Chamber

- Large volume:
 - Rin = 0.35 m, Rout = 2 m, L = 4 m
- Operating gas: He 90% iC₄H₁₀ 10%
- Full stereo:
 - 112 co-axial layers, at alternating-sign stereo angles ranging from 50 to 250 mrad
 - **Allegro**: Longer DC \Rightarrow fewer layers
 - Careful optimisation needed
- Expected resolution $\sigma_{xy} < 100 \ \mu m$, $\sigma_z < 1 \ mm$
- Cluster counting for PÎD

Straw Trackers Studies

Very recent proposal as alternative to Drift Chamber


- Potential advantages:
 - Comparable resolution with greater design flexibility, PID
 - Operational robustness (broken wires)
 - Economical
- Many straw trackers built for recent experiments
 - GlueX, NA62, PANDA, Mu2e, DUNE ND...


• Interesting R&D paths

- Overall detector design
- Single tube production and assembly (minimize X_0)
- Gas studies, electronics for dE/dx measurements

N _{straws}	R _{straw} [mm]	Material [X ₀]	$\frac{\sigma_p}{p}$
100	9.7	1.3%	$0.52\% \oplus 0.15\% = 0.54\%$
112	8.7	1.5%	$0.49\% \oplus 0.16\% = 0.52\%$
200	4.9	2.5%	$0.36\% \oplus 0.21\% = 0.42\%$

$_{\rm N}$ $\Rightarrow~$ Straw-tracker alternative fully competitive with the drift-chamber.

FCC-ee has an **outstanding** physics program and is the best project we can hope for after the LHC

It is unfortunately 20 years away

But remember: ATLAS and CMS were conceptualized > 15 years before they were built

Let's design our future detectors !

A noble-liquid based Ecal is a **high-performance cost-effective** solution for a calorimeter at FCC-ee

For all other subdetectors, we are looking for collaborators to move ALLEGRO from a drawing on paper to a real **detector concept** !