Spectroscopy and lifetime measurements toward the Island of Inversion with the AGATA-PRISMA setup

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

Speaker: Davide Genna Università degli Studi di Milano and INFN

The Collaboration

D. Genna^[1], F. Drent^[2], K. Wimmer^[2], S. Bottoni^[1], P. Aguilera^[3], G. Benzoni^[1], F. Recchia^[3], J. Acosta^[4], H. Albers^[2], G. Andreetta^[3], F. Angelini^[3], M. Balogh^[3], J. Bardak^[2,5], J. Benito^[3], B. Bles^[2,5], A. Bracco^[1], D. Brugnara^[3],
S. Carollo^[3], Z. Chen^[2], G. Ciconali^[1], M. Ciemała^[6], N. Cieplicka-Orynczak^[6], L. Corradi^[7], G. Corbari^[1], A. Ertoprak^[7], R. Escudeiro^[3], C. Ferrera^[5], B. Fornal^[6], F. Galtarossa^[3], E.M. Gandolfo^[2], J. Gerl^[2], A. Giaz^[1], A. Goasduff^[7], B. Gongora Servin^[7], M. Gorska^[2], A. Gottardo^[7], A. Gozzelino^[7], Ł.W. Iskra^[6], N. Jovancevic^[5], A. Jungclaus^[4], N. Kitamura^[8], T. Kröll^[9], G. Kosir^[10], M.S.R. Laskar^[1], S. Leoni^[1], M. Luciani^[1], M. Matejska-Minda^[6], R. Menegazzo^[7], D. Mengoni^[3], T. Mijatovic^[11], B. Million^[1], R. Nicolás del Álamo^[3], J. Pellumaj^[3], S. Pigliapoco^[3], E. Pilotto^[3], W. Poklepa^[2], M. Polettini^[3], K. Rezynkina^[3], M. Rocchini^[12], M. Sedlak^[7], M. Sferrazza^[13], A. Stefanini^[7], J.J. Valiente-Dobon^[7], J. Vesic^[10], A. Yaneva^[2], L. Zago^[3], I. Zanon^[14].

[1] Dipartimento di Fisica, Università degli Studi di Milano and INFN sez. Milano, Italy
[2] GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
[3] INFN sez. di Padova and Dipartimento di Fisica, Università degli Studi di Padova, Padova, Italy

[4] CSIC Madrid, Spain
[5] University of Novi Sad, Serbia

[6] Nuclear Physics Institute, Polish Academy of Sciences, Krakow, Poland

[7] Istituto Nazionale di Fisica Nucleare LNL, Legnaro, Legnaro, Italy
[8] Center for Nuclear Study, University of Tokyo, Tokyo, Japan
[9] TU Darmstadt, Darmstadt, Germany
[10] Jožef Stefan Institute, Ljubljana, Slovenia
[11] Ruder Boskovic Institute, Zagreb, Croatia

[12] Università degli Studi di Firenze e INFN Sezione di Firenze, Italy

[13] ULB, Brussel, Belgium
[14] Stockholm University, Stockholm, Sweden

K. Wimmer et al., Phys. Rev. Lett. 105, 252501, 2010.

Main goal: understanding microscopic origin of shell and shape evolution and improve our knowledge on the nature of the nuclear force

Evolution of negative parity states

42, 6, 1990; W.N. Cattord et al., Phys. Rev. Letters, 104, 192501, 2010; S.M. Brown et al., Phys. Rev. C, 85, 011302, 2012; N. Kobayashi et al., Phys. Rev. C, 93, 014613, 2016. ²⁵⁻³¹Mg: D.M. Headly et al., Phys. Rev. C 38, 1698, 1988; W. Brendler et al., Z Physik A 281, 75–88, 1977; J. R. Terry et al., Phys. Rev. C 77, 014316, 2008; H. Nishibata et al., Phys. Rev. C 99, 024322, 2019.

1/2+0.8 $^{28}Mg(d,p)^{29}Mg$ 3/2+0.6 5/2+S 3/2-0.4 1/2п 0.2 7/2п 5/2-0 0 Excitation energy [MeV] P. T. MacGregor et al., Phys. Rev. C 104, L051301, 2021.

²³⁻²⁹Ne: A.E. Champagne et al., Phys. Rev. C,
42, 6, 1990; W.N. Catford et al., Phys. Rev. Letters, 104, 192501, 2010; S.M. Brown et al.,
Phys. Rev. C, 85, 011302, 2012; N. Kobayashi et al., Phys. Rev. C, 93, 014613, 2016.

²⁵⁻³¹Mg: D.M. Headly et al., Phys. Rev. C 38, 1698, 1988; W. Brendler et al., Z Physik A 281, 75–88, 1977; J. R. Terry et al., Phys. Rev. C 77, 014316, 2008; H. Nishibata et al., Phys. Rev. C 99, 024322, 2019.

²³⁻²⁹Ne: A.E. Champagne et al., Phys. Rev. C, 42, 6, 1990; W.N. Catford et al., Phys. Rev. Letters, 104, 192501, 2010; S.M. Brown et al., Phys. Rev. C, 85, 011302, 2012; N. Kobayashi et al., Phys. Rev. C, 93, 014613, 2016. ²⁵⁻³¹Mg: D.M. Headly et al., Phys. Rev. C 38, 1698, 1988; W. Brendler et al., Z Physik A 281, 75–88, 1977; J. R. Terry et al., Phys. Rev. C 77, 014316, 2008; H. Nishibata et al., Phys. Rev. C 99, 024322, 2019.

 γ spectroscopy and lifetime measurements towards N = 20 Island of Inversion for ²³⁻²⁶Ne and ²⁵⁻²⁹Mg

Experimental campaign at LNL

Z and charge states selection

Z and charge states selection

Mass distributions after trajectory reconstruction

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

AGATA – PRISMA coincidence ²²Ne + ²³⁸U

Davide Genna

Increase in statistics by a factor of \approx **2 - 2,8**

Increase in statistics by a factor of \approx **2 - 2,8**

Energy resolution degradation \approx **0,05 – 0,1%**

Experiment ²⁶Mg + ²³⁸U

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

Comparison: ²²Ne + ²³⁸U and ²⁶Mg + ²³⁸U

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

²⁷ Na

²⁶ Ne

Conclusion

Nuclear structure of light isotopes approaching the Island of Inversion at N = 20 is now being probed using ²²Ne + ²³⁸U and ²⁶Mg + ²³⁸U MNT reactions employing the AGATA-PRISMA spectrometer, within the Mid Term Plan of Laboratori Nazionali di Legnaro.

M. Ballan et al., Eur. Phys. J. Plus 138, 709, 2023.

The analysis is focused on γ spectroscopy and lifetime measurements of excited states of the - mostly unexplored - Ne and Mg isotopic chains with N = 12 - 18.

A new analysis technique to overcome inefficiency in the PRISMA focal plane detector was developed and implemented, allowing to recover statistics by a factor between 100% to 200%, without a significant worsening of the resolution both in masses and energy spectra.

Future perspectives

- γ decay level schemes will be reconstructed for ²³⁻²⁶Ne and ²⁵⁻²⁹Mg;
- Lifetime measurements of excited states of these nuclei will be performed using the Doppler Shift Attenuation Method;
- Excitation energies and EM transition rates will be used to benchmark state-of-the art theoretical models;
- Comparison of the results of two data runs.

Thank you for the attention!

Physics case: Island of Inversion at N = 20 (back-up)

Quadrupole (2⁺, 4⁺) and octupole (3⁻) collectivity

PRISMA analysis ²²Ne + ²³⁸U (back-up)

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

PRISMA analysis ²²Ne + ²³⁸U (back-up)

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

Davide Genna

AGATA analysis ²²Ne + ²³⁸U (back-up)

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

Davide Genna

AGATA analysis ²²Ne + ²³⁸U (back-up)

24th AGATA Week – ACC Meeting, Milano, 13/09/2024

AGATA – PRISMA coincidence ²²Ne + ²³⁸U (back-up)

24th AGATA Week – ACC Meeting, Milano, 13/09/2024