

Probing Multiple Shape Coexistence in ¹¹⁰Cd with Coulomb Excitation

lwona Piętka Heavy Ion Laboratory, University of Warsaw

on behalf of the E22.41 collaboration

AGATA Collaboration Council 13th September 2024

$^{110}\mathrm{Cd}$ – from vibrational structure to shape coexistence?

Theoretical models

A a vibrational picture

The concept of a partial dynamical symmetry in the U(5) Hamiltonian. Most of the low-lying normal states in ¹¹⁰⁻¹¹⁶Cd maintain their spherical-vibrational character and few non-yrast states exhibit a departure from U(5) symmetry.

A. Leviatan et al., PRC 98, 031302(R) (2018) N. Gavrielov, et al., Phys. Rev. C 108, L031305 (2023)

B a multiple shape-coexistence

I beyond-mean-field (BMF) calculations using the symmetry conserving configuration mixing (SCCM) method with the **Gogny D1S** energy density functional

P.E.Garrett, T.R.Rodríguez et al., Phys.Rev.Lett. 123 (2019) 142502 P.E.Garrett, T.R.Rodríguez et al., Phys.Rev.C101 (2020) 044302

II General Bohr Hamiltonian using Skyrme interactions SLy4 or energy density functional UNEDF0

K.Wrzosek-Lipska, L.Próchniak et al., Acta Phys.Pol.B51 (2020) 789

Shape coexistence hypothesis

Theoretical models

a multiple shape-coexistence B

I beyond-mean-field (BMF) calculations using the symmetry conserving configuration mixing (SCCM) method with the Gogny D1S energy density functional

P.E.Garrett, T.R.Rodríguez et al., Phys.Rev.Lett. 123 (2019) 142502 P.E.Garrett, T.R.Rodríguez et al., Phys.Rev.C101 (2020) 044302

II General Bohr Hamiltonian using Skyrme interactions SLy4 or energy density functional UNEDF0

K.Wrzosek-Lipska, L.Próchniak et al., Acta Phys.Pol.B51 (2020) 789

E22.41: Coulomb excitation of 110 Cd (AGATA + SPIDER) Iwona Piętka (HIL UW) 4 / 13

Coulomb excitation of ¹¹⁰Cd with ⁶⁰Ni at LNL

J.J.Valiente-Dobón, R. Menegazzo, A. Goasduff *et al.*, Nucl.Instr.Meth.A1049 (2023) 168040. M.Rocchini, K. Hadyńska-Klęk, A. Nannini *et al.*, Nucl.Instr.Meth.A971 (2020) 164030

Iwona Piętka (HIL UW) E22.41: Coulomb excitation of 110 Cd (AGATA + SPIDER) 5 / 13

The Post Pulse Shape Analysis (PostPSA)

Data analysis

Iwona Piętka (HIL UW) E22.41: Coulomb excitation of ¹¹⁰Cd (AGATA + SPIDER) 8 / 13

Data analysis – "wings" in the γ -ray spectrum

Gamma - theta for binary partner

Data analysis – trigger

Time difference of the two detectors

Iwona Piętka (HIL UW) E22.41: Coulomb excitation of ¹¹⁰Cd (AGATA + SPIDER) 10 / 13

Coulomb excitation of ¹¹⁰Cd with ⁶⁰Ni beam

Iwona Piętka (HIL UW) E22.41: Coulomb excitation of 110 Cd (AGATA + SPIDER) 11 / 13

Summary

The safe Coulomb-excitation of 110 Cd with 60 Ni beam, using AGATA + SPIDER setup, performed at LNL

the Post Pulse Shape Analysis

- ✓ Neutron damage corrections
- ✓ Final energy re-calibrations
- \checkmark Force Segments to Core
- ✓ Global time alignments

✓ identification of the γ -ray transitions in the spectrum of ¹¹⁰Cd

next steps:

- ullet analysis of particle- γ timing spectra collected with different triggers
- ullet investigating the "wings" issue in the $\gamma\text{-}\mathrm{ray}$ spectrum
- data division in terms of the scattering angle of ⁶⁰Ni projectile
- extraction of matrix elements in ¹¹⁰Cd (GOSIA analysis)

<u>E22.41 collaboration</u>: IP¹, L. Próchniak¹, K. Wrzosek-Lipska¹, P.E. Garrett², A. Nannin³, M. Rocchini^{2,3},
M. Zielińska⁴, P. Aguilera^{5,6}, Z. Ahmed², F. Angelini^{6,7}, M. Balogh⁷, J. Benito^{5,6,19}, H. Bidaman², V. Bildstein²,
D. Brugnara⁷, S. Buck², S. Carollo⁵, J. Cederkäll⁸, R. Coleman², G. Colombi^{9,17,18}, D. T. Doherty¹⁰, A. Ertoprak⁷,
R. Escudeiro⁵, F. Galtarossa⁵, A. Goasduff⁷, B.Góngora-Servín^{7,11}, A. Gottardo⁷, A. Gozzelino⁷, B. Greaves²,
K. Hadyńska-Klęk¹, S.F. Hicks¹², Z. Huag⁵, A. Illana¹³, D. Kalaydjieva^{2,4}, M. Komorowska¹, J. Kowalska¹,
K. Krutul¹, N. Marchini³, M. Matejska-Minda¹⁴, D. Mengoni^{5,6}, P.J. Napiorkowski¹, D.R. Napoli⁷, S. Pannu²,
J. Pellumaj^{7,11}, R.M. Pérez-Vidal^{7,15}, S. Pigliapoco^{5,6}, E. Pilotto^{5,6}, F. Recchia^{5,6}, K. Rezynkina^{5,6}, M. Sedlák^{7,20},
A. Stolarz¹, K. Stoychev^{2,16}, C.E. Svensson², S. Valbuen², J.J. Valiente-Dobón⁷, L. Zago^{6,7}, I. Zanon⁷, G. Zhang⁵,

¹HIL, University of Warsaw, Poland;

²Department of Physics, University of Guelph, Canada;

³INFN, Sezione di Firenze, Italy;

⁴ IRFU, CEA, Université Paris-Saclay, France;

⁵ INFN, Sezione di Padova, Italy;

⁶Dipartimento di Fisica, Università di Padova, Italy;

⁷INFN, Laboratori Nazionali di Legnaro, Italy;

⁸Department of Physics, Lund University, Sweden;

⁹Institut Laue Langevin, Grenoble, France;

¹⁰Department of Physics, University of Surrey, UK;

¹¹Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Italy;

¹²Department of Physics, University of Dallas, Irving, Texas, USA;

¹³Accelerator Laboratory, Department of Physics, University of Jyväskylä, Finland;

¹⁴Polish Academy of Sciences, Kraków, Poland;

¹⁵ IFIC, CSIC - Universitat de Valéncia, Spain;

¹⁶IJCLab, Université Paris-Saclay, France;

¹⁷Dipartimento di Fisica, Università di Milano, Italy;

¹⁸INFN, Sezione di Milano, Italy;

¹⁹ Faculty of Physics, University Complutense of Madrid, Spain;

²⁰ Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

This work is partially supported by the Polish - French International Research Project **COPIGAL**.

