Search for a Josephson-like effect in the ¹¹⁶Sn + ⁶⁰Ni system & Lifetimes in Ca and Ar isotopes

Giuseppe Andreetta

INFN-LNL & UNIPD

ACC 12th-13th September 2024

LINE Laboratori Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

The Josephson Effect

Physics of matter:

- Cooper pairs of electrons (phonon exchange with lattice)
- Josephson junction: S|I|S
- Voltage difference V
- Correlation length $\xi \approx 10^4$ Å
- \rightarrow ACJE: supercurrent + microwave radiation

Nuclear physics:

- Cooper pairs of nucleons (Pairing interaction)
- Below-barrier/reaction: SNES
- Reaction Q-value
- Correlation length $\xi_N \approx 13.5$ fm
- Auclear ACJE: enhancement of ransfer probability + predicted ray lipole emission

The Josephson Effect

Physics of matter:

- Cooper pairs of electrons (phonon exchange with lattice)
- Josephson junction: S|I|S
- Voltage difference V
- Correlation length $\xi \approx 10^4$ Å
- \longrightarrow ACJE: supercurrent + microwave radiation

Nuclear physics:

- Cooper pairs of nucleons (Pairing interaction)
- Below-barrier reaction: SN|E|SN
- Reaction Q-value
- Correlation length $\xi_N \approx 13.5$ fm

 \rightarrow Nuclear ACJE: enhancement of transfer probability + predicted γ -ray dipole emission

The experiment

The experiment

The experiment

Experiment 22.28, February 2023, LNL

- ¹¹⁶Sn beam @ *E_{lab}* = 460 MeV (ALPI-PIAVE), 1.5 pnA
- ⁶⁰Ni target: 100, 200, 300 μg/cm²
 + 20 μg/cm² C "fronting"
- PRISMA @ 20°, AGATA+LaBr opposite to PRISMA
- Si-det @ 55° for back-scattered C and Ni ions

Based on L. Corradi and S. Szilner, proposal n. 28, LNL PAC 2021

Main idea

- center of charge oscillates against CM
- the "preferential" reference frame is the CM
- energy conservation in CM:

$$K + Q_{gg} = K' + E_x + E_{JE}$$

measured Q-value:

$$Q = Q_{gg} - E_x - E_{JE} = K' - K = -TKEL$$

 plot E_γ vs Q-value (NB: Doppler correction done with CM velocity) to gate on the region where the JE is expected to occur

AGATA results: E-Q

AGATA results: Q-gated spectra

Q-gated spectra for On-, 1n- and 2n-transfer channels, normalized using the ratio of production yields (PRISMA mass spectrum in coincidence with AGATA)

AGATA results: Q-gated spectra

Good (maybe) news:

- number of counts in the region of interest above 3 MeV (to almost avoid discrete lines) is \sim 340, compatible with the expected amount of JE gammas
- in the other channels, the normalized counts are 60 for the 0n and 40 for the 1n transfer

Bad news:

- very much gate dependent
- Q-value resolution very poor (few MeV)
- discrete gammas still present, so this comparison is very very qualitative
- \rightarrow simulations are needed

Simulations

Work on simulation started, 1st step is to reproduce the discrete lines

and experimental data (blue)

Simulations

Work on simulation started, 1st step is to reproduce the discrete lines

Example of comparison between simulated spectrum (red, DC for ¹¹⁶Sn) and experimental data (blue)

Conclusions

To summarize:

- High energy tail: normalization issue, but could be the best way to see something
- Q-value resolution: still to be understood, maybe energy losses to be better evaluated?
- Simulations: on going
- Angular distribution: very low statistics, pretty impossible to see a pattern

Lifetimes in Ca and Ar isotopes

48Ti	49Ti	SOTi	51Ti	52 T i	53 T i	54Ti	55Ti	56Ti	
47Sc	48Sc	49Sc	50Sc	51Sc	62Sc	53Sc	54Sc	55Sc	
46Ca	47Ca	48Ca	49Ca	50Ca	51Ca	52Ca	53Ca	54Ca	
45K	46K.	47K	48K	49K	50K.	51K	52K.	53K	
44Ar	45Ar	46Ar	47Ar	48Ar	49Ar	50Ar	51Ar	52Ar	1
43Cl	44Cl	45Cl	46Cl	47Cl	48Cl	49Cl	50Cl	51Cl	
425	43S	4 4S	45S	46S	4 7S	48S	4 9S		
41P	42P	43P	44P	45P	46P				
40Si	41Si	42Si	43Si	44Si					

Spokepersons: C. Fransen, A. Gottardo, D. Mengoni,

Investigation of ⁵⁰⁻⁵²Ca

- → large charge and matter radii observed
- → also hints for subshell closures N=32 (νp_{3/2}), N=34 (νp_{1/2}); mass measurements

Investigation of ⁴⁶⁻⁴⁸Ar

→ Weakening of N=28 shell closure in ⁴⁶Ar → explanation from shell structure:

depletion of $\pi s_{1/2}$?

- E(2+) = 700 800 keV
- E(2+) = 1000 1500 keV
- E(2+) > 2500 keV

Lifetimes in Ca and Ar isotopes

Spokepersons: C. Fransen, A. Gottardo, D. Mengoni

PRISMA analysis on-going