

Octupole collectivity in ⁹⁶Zr from low-energy Coulomb excitation with the AGATA+SPIDER setup (22.18)

Federica Ercolano, Master Thesis

Collaboration

<u>F. Ercolano¹, N. Marchini², D.T. Doherty³, M. Zielińska⁴, M. Rocchini², A. Nannini², P.E. Garrett⁵, K. Hadyńska-Klęk⁶, M. Balogh⁷, P. Aguilera⁷, F. Angelini⁷, D. Bazzacco⁷, J. Benito^{7,9}, G. Benzoni⁸, D. Brugnara⁷, S. Buck⁵, F. Camera⁸, R. Coleman⁵, R. Escudeiro^{7,9}, A. Ertoprak⁷, G. de Angelis⁷, F. Galtarossa^{7,9}, N. Gelli², A. Goasduff⁷, B. Gongora⁷, A. Gottardo⁷, A. Gotzelino⁷, D. Kalaydjieva⁴, W. Korten³, Md. S. R. Laskar⁸, M. Matejska-Minda¹⁰, D. Mengoni^{7,9}, D. Napoli⁷, M. Ottanelli², G. Pasqualato¹¹, J. Pellumaj⁷, R.M. Pérez-Vidal⁷, S. Pigliapoco^{7,9}, E. Pilotto⁷, F. Recchia^{7,9}, K. Rezynkina⁹, K. Stoychev¹¹, J. Valiente Dobón⁷, K. Wrzosek-Lipska⁶, L. Zago⁷, G. Zhang⁹, I. Zanon⁷, T. Zidar⁵
</u>

¹ INFN Sezione di Napoli, Naples, Italy; ² Università degli studi di Firenze, Dipartimento di Fisica, Florence and INFN Sezione di Firenze, Florence, Italy; ³ Department of Physics, University of Surrey, Guildford, UK; ⁴ IRFU, CEA Saclay, Université Paris-Saclay, France; ⁵ University of Guelph, Guelph, Canada; ⁶ Heavy Ion Laboratory, University of Warsaw, Poland; ⁷ INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy; ⁸ INFN Sezione di Milano, Milano, Italy; ⁹ Università degli Studi di Padova, Padova, Italy; ¹⁰ IFJ-PAN, Kraków, Poland; ¹¹ IJCLab, Université Paris-Saclay, France

Coulomb excitation of ⁹⁶Zr at LNL (22.18)

- data taking: October 21-25, 2022
- beam: ⁵⁸Ni, 160 MeV, 3 pnA
- target: ⁹⁶Zr, self-supporting

AGATA array (11 ATCs), close-up position.

SPIDER: a modular array of 7 Si detectors, each segmented into 8 annular strips (junction side) $\vartheta_{LAB} = 126^{\circ} - 162^{\circ}$ (detection of back-scattered ⁵⁸Ni ions)

Goal of the experiment: quadrupole moments of $2^{+}_{1,2}$ states Goal of the MSc thesis: investigation of the 3^{-}_{1} state properties

Octupole collectivity in Zr isotopes: the ⁹⁶Zr anomaly

T. Kibédi and R.H. Spear, At. Data Nucl. Data Tables 80, 35 (2002)

- B(E3, 3⁻₁ → 0⁺₁) value in ⁹⁶Zr strikingly high (evaluated value: 53(6) W.u.); long-standing challenge for theory.
- New measurement of the E1/E3 branching ratio in the decay of the 3⁻ state (Ł. Iskra *et al*, Phys. Lett. B 788 (2019) 396) points to lower octupole collectivity

⁹⁶Zr target used in the LNL study

- Problems to buy enriched ⁹⁶Zr material for the targets due to the Russia-Ukraine war
- Several metallic ⁹⁶Zr targets loaned from other laboratories (Argonne, Bucharest), but with a lower isotopic enrichment than reported
- An RBS study of the ⁹⁶Zr target used at LNL was performed after the measurement at the LABEC laboratory in Florence:
 - oxidized front and back surfaces of the target;
 - target thickness: 690 μ g/cm²

RBS spectrum measured at LABEC for the ⁹⁶Zr target used at LNL

Coulomb excitation of ⁹⁶Zr at LNL: total γ-ray spectrum

- Transitions in other Zr isotopes (⁹⁰Zr, ⁹²Zr, ⁹⁴Zr) present in the spectrum due to significant isotopic impurity of the target
- Oxidized front and back surfaces of the target – ⁵⁸Ni + ¹⁶O fusion-evaporation reaction leading to intense transitions in ⁷²Se, ⁷²Br, ⁶⁹As

Total γ-ray energy spectrum, acquired in coincidence with the back-scattered ⁵⁸Ni ions, Doppler corrected for the target nuclei

Cuts on excitation-energy spectrum

Gates were applied on the excitation energy to suppress the fusion-evaporation background:

Very different patterns – suppression of fusion-evaporation events possible

Cuts on excitation-energy spectrum

Gates were applied on the excitation energy to suppress the fusion-evaporation background:

500

1000

 γ -ray energies, Doppler-corrected for the target nuclei, *versus* total excitation energy of the ⁵⁸Ni + ⁹⁶Zr system

Projection of the matrix on the y axis, obtained with a gate on the x axis (14 - 50 MeV)

1500

2000

2500

Gamma Energy [keV]

3000

Cuts on excitation-energy spectrum

Gates were applied on the excitation energy to suppress the fusion-evaporation background:

0

Projection of the matrix on the y axis, obtained with a gate on the x axis (-30 - 6 MeV)

versus total excitation energy of the ⁵⁸Ni + ⁹⁶Zr system

Gamma Energy [keV]

Preliminary results

Transition probabilities in ⁹⁶Zr determined from the measured γ -ray intensities:

B(E3; $3_1^- \rightarrow 0_1^+$) = 41(3) W. u.

 $B(E1; 3_1^- \rightarrow 2_1^+) = 114(13) \cdot 10^{-4} \text{ W. u.}$

F. Ercolano, MSc thesis, 2024

Collaboration

<u>F. Ercolano¹, N. Marchini²</u>, D.T. Doherty³, M. Zielińska⁴, M. Rocchini², A. Nannini², P.E. Garrett⁵, K. Hadyńska-Klęk⁶, M. Balogh⁷, P. Aguilera⁷, F. Angelini⁷, D. Bazzacco⁷, J. Benito^{7,9}, G. Benzoni⁸, D. Brugnara⁷, S. Buck⁵, F. Camera⁸, R. Coleman⁵, R. Escudeiro^{7,9}, A. Ertoprak⁷, G. de Angelis⁷, F. Galtarossa^{7,9}, N. Gelli², A. Goasduff⁷, B. Gongora⁷, A. Gottardo⁷, A. Gotzelino⁷, D. Kalaydjieva⁴, W. Korten³, Md. S. R. Laskar⁸, M. Matejska-Minda¹⁰, D. Mengoni^{7,9}, D. Napoli⁷, M. Ottanelli², G. Pasqualato¹¹, J. Pellumaj⁷, R.M. Pérez-Vidal⁷, S. Pigliapoco^{7,9}, E. Pilotto⁷, F. Recchia^{7,9}, K. Rezynkina⁹, K. Stoychev¹¹, J. J. Valiente Dobón⁷, K. Wrzosek-Lipska⁶, L. Zago⁷, G. Zhang⁹, I. Zanon⁷, T. Zidar⁵

¹ INFN Sezione di Napoli, Naples, Italy; ² Università degli studi di Firenze, Dipartimento di Fisica, Florence and INFN Sezione di Firenze, Florence, Italy; ³ Department of Physics, University of Surrey, Guildford, UK; ⁴ IRFU, CEA Saclay, Université Paris-Saclay, France; ⁵ University of Guelph, Guelph, Canada; ⁶ Heavy Ion Laboratory, University of Warsaw, Poland; ⁷ INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy; ⁸ INFN Sezione di Milano, Milano, Italy; ⁹ Università degli Studi di Padova, Padova, Italy;

¹⁰ IFJ-PAN, Kraków, Poland; ¹¹ IJCLab, Université Paris-Saclay, France

