Report on the AGATA@Legnaro experiment EXP 22.04

R. Abels, P. Reiter, K. Arnswald, R. Burggraf, T. Büsken, M. Droste, K. Henseler, H. Hess, R. Hirsch, H. Kleis, N. Königstein, D. Luyken, A. Salice, A. Vogt, J. Wehlitz, D. Werner: IKP, Universität zu Köln, Germany A. Gargano, G. de Angelis, L. Corradi, E. Fioretto, A. Gottardo, D.R. Napoli, A.M. Stefanini, J.J. Valiente-Dobon: INFN - Laboratori Nazionali di Legnaro, Italy D. Bazzacco, F. Recchia, S. Lenzi, R. Menegazzo, D. Mengoni, F. Scarlassara: Italy Departimento di Fisica dell'Universita and INFN, Italy S. Leoni, A.Bracco, G. Benzoni, F. Camera, B. Million, N. Blasi, O. Wieland, F. C. L. Crespi: INFN and Università di Milano, Italy A.Gadea: Instituto de Fisica Corpuscular, Universitat de Valencia, Spain Z. Podolyak: Department of Physics, University of Surrey, United Kingdom T. Mijatovic, S. Szilner: Ruder Boskovic Institute, Croatia

Physics motivation

- MNT in the vicinity of ²⁰⁸Pb
 - Lack of knowledge for nuclei east of ²⁰⁸Pb
 - Gamma transitions can uniquely attributed
 - Shall give insights to the evolution of shell structures in N>126 nuclei
- Investigations in the Xe-Ba region
 - Solve open questions between shell-model theory and experiments (e.g. in ¹³¹Te)
- MNT reactions are a competitive tool to populate exotic neutron-rich nuclei along the valley of stability

Experiment setup

- First experiment 22.04 January 2023
- Recovery February 2024
- Multi Nucleon Transfer reactions
- ¹³⁶Xe Beam @ 1GeV , ~20 enA
- ²⁰⁸Pb Target (1.8mg/cm² 2.6mg/cm²)

PRISMA system

• MCP:

- First position information
- TOF start detector
- Quadrupole magnet
- Dipole magnet

PRISMA system

• MCP:

- First position information
- TOF start detector
- Quadrupole magnet
- Dipole magnet

- MWPPAC:
 - 10 segments with 100 mm
 - x, y position
 - TOF stop detector
- → Ion tracks reconstructed event-by-event

Element (Z) identification

Charge state identification

 Radius iterative reconstructed • $\frac{E_{IC}}{R\beta} \propto q$ Z = 56 $E_{IC}/R\beta$ 92 92 Selectred events of Ba All events of Ba

E_{IC} [a.u.]

Aberration correction for Z = 56

• $\frac{A}{q} = B \bullet R \bullet \frac{t_{TOF}}{D}$

- Systematic effects concern trajectory reconstruction
 - Correct: MCPx MCPy X_{FP}

Mass spectra for each atomic charge state Z = 56

•
$$\frac{A}{q} = a_i \cdot \frac{A}{q_{uncal}} + b_i$$

Final mass identification

• mass =
$$(\frac{A}{q})_{cal} \bullet q_{eff}$$

Mass time shifts for Ba

AGATA Doppler correction

AGATA Doppler correction

FWHM 8.5 keV @1313keV

Doppler corrected ¹³⁵Ba spectra

Doppler corrected ¹³⁵Ba spectra

Summary

- Done
 - Successful experiment with AGATA-PRISMA Setup
 - PRISMA analyses completed
 - Identified masses from ¹²³I to ¹⁴⁰Ba
 - Mass resolution of $m/\Delta m = 233$ for ¹³⁶Ba achieved
 - Doppler correction for beam-like-particles
- Outlook
 - Gamma spectroscopy analyses started
 - Improve Doppler correction
 - Doppler correction for target-like-particles
 - Investigation of the Pb isotopes and vicinity

