Spectroscopy and fission studies in inverse kinematics: ²⁰⁸Pb + ⁹Be with AGATA and PRISMA

Report on EXP_009 (*LNL 22.23*)

Filippo Angelini

Università degli Studi di Padova

INFN - LNL

AGATA Collaboration Council Meeting

Milano, 13th September 2024

stituto Nazionale di Fisica Nuclear

Physics case : Evolution of N = 50 shell gap

Decrease in the N=50 energy gap towards ⁷⁸Ni: compatible behaviour with two different methods

1. Mass measurements: decrease of gap up to ⁸¹Ga Re-increase measured for ⁸⁰Zn

S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008) J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008)

Physics case: Fission studies

D. Ramos et al., Phys. Rev. C 97, 054612 (2018)

²¹⁷Rn: **symmetric** fission is expected

Shell effects should be smaller, but no study was done on the influence of shell effects in this area Inverse kinematics allows the study of kinematic fission observables: yields, velocity distributions, N/Z

Fission fragment structure affects the scission and formation of the final system

M. Caamaño et al., Phys. Rev. C 92, 034606 (2015)

Study of fission mechanism

AGATA + PRISMA experiment at LNL

Exp. 22.23, december 2022

²⁰⁸Pb+⁹Be fusion-fission in inverse kinematics

Kinematic focusing of fission fragments (A,Z) identification with PRISMA at 20°-23°

Measurement of de-excitation y rays with AGATA

CN: ^{217}Rn with E_{ex} = 39.9 MeV, J = 17.5 h

Issues with TP during acquisition: **low statistics in gamma-ray spectra**

Previous year and current status

Last year's status:

- Calibration of **PRISMA** masses for Z=29-38
- Optimization of AGATA processing

This year's to do list:

- Optimize **Doppler correction**
- Sum statistics for gammas in exotic channels (N=50)
- Start systematic calibration of PRISMA for **fission studies**

Doppler correction optimization

Modifying geometric parameters (AGATA and PRISMA angles, positions) to optimize **centroid** and **FWHM** of the DC peaks (**Optimizer** function of the AgataSelector)

MCP X,Y scale has a big impact! Optimal values are 0.5-0.7. Wrong MCP position ?

AGATA-PRISMA

Issue with AGATA Trigger Processor

Validation of less events than expected

Efficiency check on ⁸⁴Se, ⁸⁸Kr, ⁹⁴Sr (core spectrum):

Single efficiency:γ singles in 2+ / Ions in PRISMACoincidence efficiency:4+-gated γγ counts in 2+ / γ singles in 4+AGATA efficiency:Efficiency curve estimated with 152Eu

Isotope - E(2+)	88Kr - 775 keV	94Sr - 837 keV	84Se - 1455 keV
Single eff.	0.95%	0.92%	0.62%
Coinc. eff.	3.46%	3.35%	2.39%
Ratio	3.64	3.64	3.85
AGATA eff.	3.96%	3.85%	2.97%

Assuming every detected ion emits a 2+ gamma, we seem to be validating **~4 times** gamma counts less compared to PRISMA counts

Ratio reaches >5 with tracked and addback spectra

Comparison with LaBr3

Comparison with **LaBr3** (5 detectors 3"x3"):

Counts in 2+ peak / Ions in PRISMA AGATA core, AGATA tracked and LABR spectra Normalized by efficiency curve

	Isotope - E(2+)	78Ge- 619 keV	88Kr - 775 keV	94Sr - 837 keV
a	Core 2+ / Ions	0.95 %	0.95 %	0.92 %
b	Core efficiency	4.32 %	3.96 %	3.85 %
С	Tracked 2+ / lons	1.05 %	1.09 %	1.00 %
d	Tracked efficiency	5.42 %	5.18 %	5.08 %
е	LABR 2+ / lons	0.59 %	0.53 %	0.61 %
f	LABR efficiency	1.28 %	0.86 %	0.775 %
	Norm. LABR / core	2.1	2.6	3.3
	Norm. LABR / tracked	2.4	2.9	4.1

Norm. LABR / core = (e / f) / (a / b) [Expected ratio is 1] Norm. LABR / tracked = (e / f) / (c / d) [Expected ratio is 1]

Gamma spectroscopy of Cu isotopes

Most exotic channels do not have enough statistics to see gamma transitions

Spectroscopy of less neutron-rich isotopes with **Z=29-32**, **N=40-50** is possible **Unreported transitions** are found.

Gamma spectroscopy of Cu isotopes

Most exotic channels do not have enough statistics to see gamma transitions

Spectroscopy of less neutron-rich isotopes with **Z=29-32**, **N=40-50** is possible **Unreported transitions** are found.

Spectra of **Cu isotopes** show many unidentified peaks

Gamma spectroscopy of Cu isotopes: odd-even

Gamma spectroscopy of Cu isotopes: odd-odd

PRISMA analysis of fission fragments

A/Q from trajectory reconstruction (Brho)

A/Q must be a ratio of integer numbers

Theoretical values can be used to calibrate the variables (e.g. A/Q = 3)

Mass from IC vs A/Q

Mass estimate from IC energy Poor resolution, but useful to double check

Atomic number Z selection

Atomic number Z selection

Charge state Q selection

Mass calibration

A/Q calibrated with TOF offsets of the PPAC sections **No extra calibration**

Summary and outlook

Fission fragments

-

Gamma spectroscopy

Global identification of fragments

- **Optimization** of Doppler correction
- New transitions for nuclei with Z=29-32, N=40-50

- Extraction of yields, TKE distributions
- Comparison with calculations to obtain features
- -> University of Santiago de Compostela

- Study of coincidences
- Identification of levels