

Development of a self-calibration technique for gamma-ray tracking arrays

Sidong Chen¹, Michael Bentley¹, Stefanos Paschalis¹, Marina Petri¹, Marc Labiche², Fraser Holloway³

1. University of York, 2. STFC Daresbury Laboratory, 3. University of Liverpool

the 24th AGATA week, Milano

Current challenges

signal basis generation

Experimental (scanning)

- long acquisition times
- different conditions between scanning and experiment, e.g. noise, radiation damage
- mechanical alignment

Analytical (calculated)

- intrinsic space-charge density
- the electron/hole mobility
- crystal temperature and
- crystal orientation
- passivated and contact thickness
- shape of charge cloud

- Geant4 simulate AGATA-1Pi array, save Compton scattering events
- Pulse shape basis linear interpolation \rightarrow simulation data
-

 22 Na source at center of array

 \bullet

- Large signals, CoreE>200keV (CoreE>300keV data is used for self-calibration)
- Compton scattering events (fold 2 trigger)

ADL (AGATA Detector Library): theoretical calculated basis on 2 mm grid $Chi2:$ the difference between experimental signal and the signal basis fitting The PSA final chi2 with self-calibration basis is smaller than that with ADL basis ⇒ self-calibration basis better describe experimental signal

Compton Scattering Angle

Scattering angle vs. Scattering Energy

Angle_PSA - Angle_Compton

- E680 fission data of ⁹⁸Zr
- Crystal A006 commonly used in GANIL setup and LNL setup
- Electronics following the crystal can be different between two setups

GANIL benchmark data

UNIVERSITY

Next step

- Produce optimized bases for the whole array from high
	- statistic source calibration data
- Validating the Self-Calibration bases with the clean spectra from a simple in-beam gamma-ray experiment

- Beam intensity: ²⁸Si 1-pnA
- Target thickness: 197 Au 1-mg/cm²
- GOSIA estimated yield 400,000 gamma-particle coincidences per day
- PRISMA rate 3kHz
- PRISMA energy resolution 1/1000
- MCP entrance detector position resolution 1mm

Source calibration

- Strong ⁸⁸Y source, ~500kBq x2
- source at some positions (target position, close to some detectors, ...)
- Flod 2 trigger with core energy threshold 300keV or higher
- Save trace data, validation rates below 1kHz per crystal
- Data taking for 7 days

Selfcalib basis from simulation data, ⁸⁸Y source at target position, 1e11 decays

Summary

- Self-calibration technique is developed with AGATA simulation data with pulse shape
- Experimental data is taken with ²²Na source at LNL, self-calibration with experimental data give results consistent with simulation data
	- PSA with self-calibration basis and original basis are compared, observing some improvements with self-calibration basis
- The self-calibration basis is applied to the GANIL benchmark data, yielding reasonable results
- Calibration data taking with strong ⁸⁸Y source and benchmark experiment were proposed and scheduled in December 2024

Collaboration

S. Chen¹, S. Paschalis¹, M. Bentley¹, M. Petri¹, M. Labiche², F. Holloway³, L. Harkness-Brennan³, A.J. Boston³, J.J. Valiente Dobón⁴, M. Rocchini⁵, A. Goasduff^{4,6,7}, R.M. Pérez-Vidal⁴, D. Kalaydjieva⁸, K. Stoychev⁸, N. Marchini⁹, M. Zielińska¹⁰, A.O. $-Macchiavelli¹¹, I.Y. Lee¹², J. Dudouet¹³$

^{*1*} University of York, York, UK. ² STFC Daresbury Laboratory, Daresbury, UK. ³ University *of Liverpool, Liverpool, UK. ⁴ INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy. ⁵ Università degli Studi and INFN Sezione di Firenze, Florence, Italy. ⁶ Dipartimento di Fisica dell'Università di Padova, Padova, Italy. ⁷ INFN, Sezione di Padova, Padova, Italy. ⁸* University of Guelph, Canada. ⁹ *INFN Firenze, Italy. ¹⁰ Irfu, CEA, Université Paris-Saclay, France. 11 Oak Ridge National Laboratory, USA. 12 Lawrence Berkeley National Laboratory, USA. 13 Université de Lyon, CNRS/IN2P3, Villeurbanne Cedex, France*

Thank you for your attention

Backup

TAC comments

➢

➢

➢

The PRISMA MWPPAC focal plane detector is known to have quite low efficiency for Z<20 ions. Please consider about 50-60% intrinsic efficiency for Z=14 ions.

 If the statistics are lower than expect, we can combine data from several detectors.

Could the target (Au) excitation be a problem for you? You will have many gamma-ray transitions around 200-500 keV which may be problematic for your event selection. Have you considered the possibility to use instead Nb, Pt, Pb targets?

 We don't think the Au excitation will make serious problem. If it does, we can use Pb target instead.

Beam: The required energy from Tandem is high: in this configuration (double stripper in the Tandem) the required beam current is at the very limit: it could be that the maximum current achievable is lower, around 1pnA.

We will use 1-mg/cm² Au target and 1pnA ²⁸Si beam.

UNIVERSITY Simulation: Position fidelity dist: npaths dist difference in Z 10×10^{3} E $10²$ $\times 10^3$ $10F$ optimized $\begin{array}{c}\n\text{distance / mm} \\
\hline\n\frac{1}{2} \\
\hline\n\frac{1}{2}\n\end{array}$ distance / mm distance / mm initial $RMS = 0.91$ mm Mean = 1.57 mm 50 100 150 200 300 difference in R difference in Phi $\times 10^3$ $\times 10^3$ dist: npaths $11₀$ $RMS = 1.19mm$ $RMS = 1.26$ mm $10E$ 1 mm *select HCs*

distance 50 300 100 Number of paths

Simulate 2MeV gamma 2e10 events

- ∙ Select HC linked with large number of paths
- ∙ Converged HC position reach ~1mm (RMS) fidelity
- ∙ Slightly worse resolution in phi direction

 10

Self-calibration basis (simulation)

Chi2 difference: self-calib pulse vs. real pulse

∙ Large Chi2 observed around segment boundary

Simulate 2MeV gamma 2e10 events

PSA position resolution (simulation)

Using the calculated Basis on a 2mm grid

Using the self-calibrated basis

GANIL benchmark data

- Identify incoming gamma energy by OFTtracking
- ∙ consistent results between simulation and source calibration

Simulation: Position fidelity

Simulation with Pulse Shape

Geant4: Signal Basis:

- ∙ AGATA-1Pi array: 45 detectors
- ∙ Geant4: Compton events information
- ∙ Linear interpolation ADL pulse shape basis

Group Pulse Shape

Group Pulse Shape

Simulation: Position resolution

Simulate 2MeV gamma 1e11 events

88710

137.7

6.316

376.8

5.183

 $\frac{1}{2}$ ¹⁰

 $10²$

10

6000

787730

137.7

6,316

376.8

5.183

6000

32

Gamma source

Identify incoming energy according to figure of merit from OFT

60Co source

Simulate 60Co source 2e10 evts (energy gate ±10keV, ~2e8 good evts)

Calibration data

UNIVERSITY