

Development of a self-calibration technique for gamma-ray tracking arrays

<u>Sidong Chen</u>¹, Michael Bentley¹, Stefanos Paschalis¹, Marina Petri¹, Marc Labiche², Fraser Holloway³

1. University of York, 2. STFC Daresbury Laboratory, 3. University of Liverpool

the 24th AGATA week, Milano

Current challenges

signal basis generation

Experimental (scanning)

- long acquisition times
- different conditions between scanning and experiment, e.g. noise, radiation damage
- mechanical alignment

Analytical (calculated)

- intrinsic space-charge density
- the electron/hole mobility
- crystal temperature and
- crystal orientation
- passivated and contact thickness
- shape of charge cloud

- Geant4 simulate AGATA-1Pi array, save Compton scattering events
- Pulse shape basis linear interpolation \rightarrow simulation data
- Group pulse shape according to similarity

Experiment: source data

- ²²Na source at center of array
- Large signals, CoreE>200keV (CoreE>300keV data is used for self-calibration)
- Compton scattering events (fold 2 trigger)

ADL (AGATA Detector Library): theoretical calculated basis on 2 mm grid
 Chi2: the difference between experimental signal and the signal basis fitting
 The PSA final chi2 with self-calibration basis is smaller than that with ADL basis
 ⇒ self-calibration basis better describe experimental signal

Compton Scattering Angle

- E680 fission data of ⁹⁸Zr
- Crystal A006 commonly used in GANIL setup and LNL setup
- Electronics following the crystal can be different between two setups

A006 Signal basis

50

40Ē

30

20E

10E

0 E

-20

-30

-40

50 c

40E

30

20 10

٥E

-10

-20

-30

40

GANIL benchmark data

UNIVERSITY

Next step

- Produce optimized bases for the whole array from high statistic source calibration data
- Validating the Self-Calibration bases with the clean spectra from a simple in-beam gamma-ray experiment

- Beam intensity: ²⁸Si 1-pnA
- Target thickness: ¹⁹⁷Au 1-mg/cm²
- GOSIA estimated yield 400,000 gamma-particle coincidences per day
- PRISMA rate 3kHz
- PRISMA energy resolution 1/1000
- MCP entrance detector position resolution 1mm

Source calibration

- Strong ⁸⁸Y source, ~500kBq x2
- source at some positions (target position, close to some detectors, ...)
- Flod 2 trigger with core energy threshold 300keV or higher
- Save trace data, validation rates below 1kHz per crystal
- Data taking for 7 days

AGATA

Selfcalib basis from simulation data, ⁸⁸Y source at target position, 1e11 decays

UNIVERSIT

Summary

- Self-calibration technique is developed with AGATA simulation data with pulse shape
- Experimental data is taken with ²²Na source at LNL, self-calibration with experimental data give results consistent with simulation data
 - PSA with self-calibration basis and original basis are compared, observing some improvements with self-calibration basis
- The self-calibration basis is applied to the GANIL benchmark data, yielding reasonable results
- Calibration data taking with strong ⁸⁸Y source and benchmark
 experiment were proposed and scheduled in December 2024

Collaboration

S. Chen¹, S. Paschalis¹, M. Bentley¹, M. Petri¹, M. Labiche², F. Holloway³, L. Harkness-Brennan³, A.J. Boston³, J.J. Valiente Dobón⁴, M. Rocchini⁵, A. Goasduff^{4,6,7}, R.M. Pérez-Vidal⁴, D. Kalaydjieva⁸, K. Stoychev⁸, N. Marchini⁹, M. Zielińska¹⁰, A.O. Macchiavelli¹¹, I.Y. Lee¹², J. Dudouet¹³

¹ University of York, York, UK. ² STFC Daresbury Laboratory, Daresbury, UK. ³ University of Liverpool, Liverpool, UK. ⁴ INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy. ⁵ Università degli Studi and INFN Sezione di Firenze, Florence, Italy. ⁶ Dipartimento di Fisica dell'Università di Padova, Padova, Italy. ⁷ INFN, Sezione di Padova, Padova, Italy. ⁸ University of Guelph, Canada. ⁹ INFN Firenze, Italy. ¹⁰ Irfu, CEA, Université Paris-Saclay, France. ¹¹ Oak Ridge National Laboratory, USA. ¹² Lawrence Berkeley National Laboratory, USA. ¹³ Université de Lyon, CNRS/IN2P3, Villeurbanne Cedex, France

Thank you for your attention

Backup

TAC comments

- The PRISMA MWPPAC focal plane detector is known to have quite low efficiency for Z<20 ions. Please consider about 50-60% intrinsic efficiency for Z=14 ions.
 - If the statistics are lower than expect, we can combine data from several detectors.
- Could the target (Au) excitation be a problem for you? You will have many gamma-ray transitions around 200-500 keV which may be problematic for your event selection. Have you considered the possibility to use instead Nb, Pt, Pb targets?
- We don't think the Au excitation will make serious problem. If it does, we can use Pb target instead.
- Beam: The required energy from Tandem is high: in this configuration (double stripper in the Tandem) the required beam current is at the very limit: it could be that the maximum current achievable is lower, around 1pnA.
- We will use 1-mg/cm² Au target and 1pnA ²⁸Si beam.

Simulation: Position fidelity

Simulate 2MeV gamma 2e10 events

Self-calibration basis (simulation)

Chi2 difference: self-calib pulse vs. real pulse

· Large Chi2 observed around segment boundary

Simulate 2MeV gamma 2e10 events

PSA position resolution (simulation)

Using the calculated Basis on a 2mm grid

Using the self-calibrated basis

GANIL benchmark data

A006 spectra with GANIL cross-talk parameters and LNL cross-talk parameters

- Identify incoming gamma energy by OFTtracking
- consistent results between simulation and source calibration

Simulation: Position fidelity

Simulation with Pulse Shape

Signal Basis:

Geant4:

- AGATA-1Pi array: 45 detectors
- Geant4: Compton events information
- Linear interpolation ADL pulse shape basis

Group Pulse Shape

= 20 seq nhits1 = 1 : 1571.00nhits2 = 1 : 1590.26nfired = 36Eng1 = 1571 Eng2 = 1590.26chi2 = 7.29173dist = 9.98804rdifphi= 7.03852 diffr = 5.51792 diffz = 4.50787 PhiRZ1 = -165.32 29.76 31.31 PhiRZ2 = -177.72 35.28 26.80 difphi = 12.4017 degree

Group Pulse Shape

Simulation: Position resolution

Simulate 2MeV gamma 1e11 events

UNIVERSITY

with noise

dist : npaths

3000

Entries

Mean

Mean y

Std Dev

Std Dev y

787730

137.7

6.316

376.8

5.183

Gamma source

Identify incoming energy according to figure of merit from OFT

1801

⁶⁰Co source

Identify incoming energy according to total energy deposit in array

⁶⁰Co source

Simulate ⁶⁰Co source 2e10 evts (energy gate ±10keV, ~2e8 good evts)

Calibration data

UNIVERSIT