
Speeding PSA
with half-precision and GPU

Roméo Molina Vincent Lafage

IJCLab, CNRS/IN2P3 & Université Paris-Saclay, Orsay, France

11th September 2024

Online (IJCLab) 11th September 2024 1 / 17

mailto:romeo.molina@in2p3.fr
mailto:vincent.lafage@in2p3.fr


AGATA Data flow1

Builder

PrePSA PSA PostPSA

PCI

PCI

Merger

Ancillary

Tracking

Local Level Processing Global Level Processing

…
..

Intermediary

Producer

Consumer

AD_Level_0

Traces

AD_Level_1

Hits

AD_Level_0

Ancillary Data 

AD_Level_2

Correlated Hits
AD_Level_3

Correlated Hits

+

Ancillary

AD_Level_4

Tracked Gamma
+ Ancillary
+ Correlated Hits

AD ≡AGATA Data

/agatadisk (CEPH)

PrePSA PSA

PSAPrePSA

PostPSA

PostPSA

GANIL DAQ

Encapsulation MFM to ADF TCP/IP connexion

Quasi online replay

1O. Stézowski, AGATA Meeting 2022

Online (IJCLab) 11th September 2024 2 / 17



Using low precisions is promising
Number of bits

Signif. (𝑡) Exp. Range 𝑢 = 2−𝑡

fp128 quadruple 113 15 10±4932 1 × 10−34

fp80 long double 64 15 10±4932 5 × 10−20

fp64 double 53 11 10±308 1 × 10−16

fp32 single 24 8 10±38 6 × 10−8

fp16 11 5 10±5 5 × 10−4

bfloat16 half 8 8 10±38 4 × 10−3

fp8 (e4m3) 4 4 10±2 6 × 10−2

fp8 (e5m2) quarter 3 5 10±5 1 × 10−1

Low precision increasingly supported by hardware
Great benefits:

▶ Reduced storage, data movement, and communications
▶ Reduced energy consumption (5× with fp16, 9× with bfloat16)
▶ Increased speed (16× on A100 from fp32 to fp16/bfloat16)

Online (IJCLab) 11th September 2024 3 / 17



Floating-point arithmetic
Floating-point computation ≠ mathematical evaluation

rounding 𝑎 ⊕ 𝑏 ≠ 𝑎 + 𝑏
no more associativity (𝑎 ⊕ 𝑏) ⊕ 𝑐 ≠ 𝑎 ⊕ (𝑏 ⊕ 𝑐)

Consequences:
invalid results
non reproducibility
performance issue (useless iterations)

Some limitations to the low precisions: (= low resolution)
Low accuracy
Narrow range

⇒
multiplication: good ; substraction : bad

Online (IJCLab) 11th September 2024 4 / 17



Discrete Stochastic Arithmetic (DSA)

Classic arithmetic
𝐴 ⊕ 𝐵 𝑅

𝑅 =3.14237654356891

DSA

𝐴1 ⊕ 𝐵1

𝐴2 ⊕ 𝐵2

𝐴3 ⊕ 𝐵3

Random
rounding

𝑅1

𝑅2

𝑅3

𝑅1 =3.141354786390989
𝑅2 =3.143689456834534
𝑅3 =3.142579087356598

each operation executed 3 times with a random rounding mode
number of correct digits in the results estimated using Student’s test with the confidence
level 95 %
operations executed synchronously

⇒ detection of numerical instabilities (ex: if (A>B) with A-B numerical noise)
⇒ optimization of stopping criteria to avoid useless iterations

Online (IJCLab) 11th September 2024 5 / 17



Assess the accuracy

implements stochastic arithmetic for C/C++ or Fortran codes
all operators and mathematical functions overloaded ⇒ little code rewriting
support for MPI, OpenMP, GPU, vectorised codes
supports emulated ou native half precision
one CADNA execution: accuracy of any result, complete list of instabilities

CADNA cost
memory: ×4
run time ≈ ×10

[Chesneaux’90], [Jézéquel & al’08], [Lamotte & al’10], [Eberhart & al’18],...Online (IJCLab) 11th September 2024 6 / 17



CADNA validates fp32 results
PSA performed natively in fp32
minimum search in a 504-dimensional space
… as in 56 time steps times 9 segments

risk to accumulate catastrophic cancellations

𝜒 = ∑
𝑠,𝑡

∣𝑆mes
𝑠,𝑡 − 𝑆ref

𝑠,𝑡∣
𝑝=0.3

requires instrumentation to assess the accuracy results

⇒ code sensitive to perturbations?
but 0.02 % of points matched differently between fp64 and original
fp32 version
only 0.02 % between CADNA version and original version

⇒ Satisfactory original fullgrid PSA results!
Online (IJCLab) 11th September 2024 7 / 17



CADNA validates fp32 results
PSA performed natively in fp32
minimum search in a 504-dimensional space
… as in 56 time steps times 9 segments

risk to accumulate catastrophic cancellations

𝜒 = ∑
𝑠,𝑡

∣𝑆mes
𝑠,𝑡 − 𝑆ref

𝑠,𝑡∣
𝑝=0.3

requires instrumentation to assess the accuracy results

⇒ code sensitive to perturbations?
but 0.02 % of points matched differently between fp64 and original
fp32 version
only 0.02 % between CADNA version and original version

⇒ Satisfactory original fullgrid PSA results!
Online (IJCLab) 11th September 2024 7 / 17



CADNA validates fp32 results
PSA performed natively in fp32
minimum search in a 504-dimensional space
… as in 56 time steps times 9 segments

risk to accumulate catastrophic cancellations

𝜒 = ∑
𝑠,𝑡

∣𝑆mes
𝑠,𝑡 − 𝑆ref

𝑠,𝑡∣
𝑝=0.3

requires instrumentation to assess the accuracy results

⇒ code sensitive to perturbations?
but 0.02 % of points matched differently between fp64 and original
fp32 version
only 0.02 % between CADNA version and original version

⇒ Satisfactory original fullgrid PSA results!
Online (IJCLab) 11th September 2024 7 / 17



Turn it into half computation (CPU)

emulated fp16
7.76 % differences between original fp32 and fp16 version
too much?
need to find another way to exploit low precision

Online (IJCLab) 11th September 2024 8 / 17



Mixed precision algorithms

Mix several precisions in the same code with the goal of
Getting the performance benefits of low precisions
While preserving the accuracy and stability of high precision

⇒ Why does it make sense to make the precision vary?
Because not all computations are equally “important”!
Example:

𝑎
+ 𝑏

64 bits

Unimportant bits

Online (IJCLab) 11th September 2024 9 / 17



Mixed precision algorithms

Mix several precisions in the same code with the goal of
Getting the performance benefits of low precisions
While preserving the accuracy and stability of high precision

⇒ Why does it make sense to make the precision vary?
Because not all computations are equally “important”!
Example:

𝑎
+ 𝑏

64 bits

Unimportant bits

Online (IJCLab) 11th September 2024 9 / 17



Coarse in half, fine in float

first step in half
second step in float
8.55 % differences with fullgrid fp32 version
under the same conditions, half-half produces 14.04 % differences!

Online (IJCLab) 11th September 2024 10 / 17



Results ′23

Figure: Distances between points found by the full grid fp32 algorithm and alternative methods

Online (IJCLab) 11th September 2024 11 / 17



preGPU

we already saw vectorised version on CPU
we also tried emulated fp16 on CPU
⇒ first, extract a minimum, standalone version of PSA on CPU
https://gitlab.com/romeomolina/psa-test-env.git
⇒ then, turn to modern C++ conventions

▶ const
▶ auto
▶ constexpr

Online (IJCLab) 11th September 2024 12 / 17

https://gitlab.com/romeomolina/psa-test-env.git


GPU

code should bind neatly to GPU
as concurrency is clearly expressed
moving it on GPUs to exploit fp16 half-precision hardware
we will show our CUDA implementation, to keep using CADNA

CUDA vs OpenACC / OpenMP : better performance,
…less portability (NVidia only),
…more coding effort

Online (IJCLab) 11th September 2024 13 / 17



GPU with CUDA

__global__ void gpu_samp_loop(float* hitSegAmp, float* corSegAmp, float* baseAmp, int* baseGrid
, float* chi2, int numPts){

//constexpr auto baseScale = PF.baseScale*RESCALE; // scaling signals to data, including
expansion factor for mapped metric
const float baseScale = 0.457844;
const int iCore = 36;
const int netChSeg = 34;
const int jPts = blockIdx.x * blockDim.x + threadIdx.x;
if(jPts < numPts){

const float *baseTrace1 = baseAmp + jPts*LOOP_SAMP*TCHAN + netChSeg*LOOP_SAMP;
const float *baseTrace2 = baseAmp + jPts*LOOP_SAMP*TCHAN + iCore*LOOP_SAMP;
float chi2_local = 0.0f;
for(auto nn = 0U; nn < LOOP_SAMP; nn++) {

f_type fdiff = hitSegAmp[nn] - baseScale * baseTrace1[nn];
chi2_local += exp2f(log2f(fabs(fdiff))*chiExponent);

}
for(auto nn = 0U; nn < LOOP_SAMP; nn++) {

f_type fdiff = corSegAmp[nn] - baseScale * baseTrace2[nn];
chi2_local += exp2f(log2f(fabs(fdiff))*chiExponent);

}
chi2[jPts] = chi2_local;

}
}

Online (IJCLab) 11th September 2024 14 / 17



Results ′24

Execution time for the different configurations on CPU and GPU (ticks)
CPU-FP32 GPU-FP32 GPU-FP16

FGS-NOLUT 624 55 52
FGS-LUT 97 51 –

CFGS-NOLUT 102 – –
CFGS-LUT 17 – –

Points identified within 5mm of those found by reference
(FGS-FP32 without the LUT executed in CPU %)

CPU-FP32 GPU-FP32 GPU-FP16

FGS-NOLUT 100 100 94
FGS-LUT 90 90 –

CFGS-NOLUT 72 – –
CFGS-LUT 68 – –

sample of 5342 events with energies ranging from 15 keV to 5 MeV

Online (IJCLab) 11th September 2024 15 / 17



Room for improvement

CPU experiments on an Intel® Core™ i9-11950H Processor with 8
cores at 2.6GHz with 24MB cache
GPU experiments on a NVIDIA RTX A2000 with 3328 CUDA cores
and 4GB memory.

⇒ increase the occupancy of the GPU cores, suggesting a possible
acceleration up to a factor ×15 on larger GPUs
GPU fp16 really bear fruits with tensor cores…Can we express the
computation as a matrix product?

Online (IJCLab) 11th September 2024 16 / 17



Conclusion

low precision is beneficial (speed, energy, storage)
accuracy control is mandatory
CADNA is well designed to do so
mixed-precision is a way to benefit from low precision
while keeping good accuracy
PSA on GPU (CUDA)
similar results between uniform precision and mixed precision for PSA

To improve optimisation of PSA:
more events should be put simultaneously on the GPU to really
benefit of GPU
have the coarse/fine grid size vary
have a hierarchy of intermediate grids

… address PrePSA
Online (IJCLab) 11th September 2024 17 / 17


